Документ подписан простой электронной подписью Информация о владельце: ФИО: Комарова Светлана Юриевна Должность: Проректер по образовательной деятельн

Должность: Проректер до абразовательное учреждение дата подписания: 03.07.2025 07:41:23 высшего образования

Уникальный программный ключ: 43ba42f5deae4116bbfcbb9ac98e39108031227e81add207cbee4149f2098d7a

Факультет ветеринарной медицины

ОПОП по специальности 36.05.01 Ветеринария

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

Б1.О.07.01 Неорганическая и аналитическая химия

Специализация – Ветеринарная медицина с дополнительной квалификацией «Ветеринарный фармацевт»

Обеспечивающая преподавание дисциплины	Математических и естественнонаучных
кафедра -	дисциплин
Разработчик, канд. биол. наук, доцент	ова — О.Е. Бдюхина

ВВЕДЕНИЕ

- 1. Фонд оценочных средств по дисциплине является обязательным обособленным приложением к Рабочей программе дисциплины.
- 3. Фонд оценочных средств является составной частью нормативно-методического обеспечения системы оценки качества освоения обучающимися указанной дисциплины.
- 4. При помощи ФОС осуществляется контроль и управление процессом формирования обучающимися компетенций, из числа предусмотренных ФГОС ВО в качестве результатов освоения дисциплины.
- 5. Фонд оценочных средств по дисциплине включает в себя: оценочные средства, применяемые для входного контроля; оценочные средства, применяемые в рамках индивидуализации выполнения, контроля фиксированных видов ВАРС; оценочные средства, применяемые для текущего контроля и оценочные средства, применяемые при промежуточной аттестации по итогам изучения дисциплины.
- 6. Разработчиками фонда оценочных средств по дисциплине являются преподаватели кафедры математических и естественнонаучных дисциплин, обеспечивающей изучение обучающимися дисциплины в университете. Содержательной основой для разработки ФОС послужила Рабочая программа дисциплины.

1. ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ

учебной дисциплины, персональный уровень достижения которых проверяется с использованием представленных в п. 3 оценочных средств

	Компетенции, мировании которых задействована дисциплина	Код и наименовани е индикатора	Ком формируем	ипоненты компете пые в рамках данногаемый результат е	нций, й дисциплины
код	наименование	достижений компетенции	знать и понимать	уметь делать (действовать)	владеть навыками (иметь навыки)
	1		2	3	4
		Общепрофессио	нальные компе	тенции	
ОПК-4	профессиональной деятельности методы решения задач с использованием современного оборудования при разработке новых технологий и использовать современную профессиональную	ИД-1 _{ОПК-4} Находит современное оборудование и использует профессиональ ную методологию для проведения эксперименталь ных исследований и интерпретации полученных результатов	- технические возможности современного специализиров анного оборудования, методы решения задач профессиональ ной деятельности.	областях химии	основных химических лабораторных операций, в т.ч. с использованием

ЧАСТЬ 2. ОБЩАЯ СХЕМА ОЦЕНИВАНИЯ ХОДА И РЕЗУЛЬТАТОВ ИЗУЧЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Общие критерии оценки и реестр применяемых оценочных средств

2.1 Обзорная ведомость-матрица оценивания хода и результатов изучения учебной дисциплины в рамках педагогического контроля

	Р	ежим контр	ольно-оценочных м	иероприятий	
Категория		20014140	Оценка со	Комисс	
контроля и оценки самооценка оцен	самооценка	самооценка взаимо-	преподавателя	представителя	и-онная
	· ·	-	производства	оценка	
	1	2	3	4	5
Входной контроль			Входное тестирование		
Индивидуализация выполнения*,					
контроль фиксированных видов ВАРС:					
- Выполнение и сдача			Проверка		
индивидуального			письменных		
задания			работ		
_			Контрольное		
- Самостоятельное			тестирование по		
изучение тем			разделам №		
Tolowski kouznozi i			1,3,5		
Текущий контроль:	Do-noo:		Потугом		
- в рамках лабораторных занятий и подготовки к	Вопросы для самоподготовк		Допуск к лабораторной		
НИМ	И		работе		
1171111	Тестовые		paddic		
- тестирование	вопросы для проведения текущего контроля				
- по итогам изучения разделов	Тестовые вопросы для проведения рубежного контроля		Контрольное тестирование по разделам		
Промежуточная аттестация* обучающихся по итогам изучения дисциплины	Тестовые вопросы для заключительн ого тестирования		Заключительное тестирование		
* данным знаком помечень	і индивидуализир	уемые вид	ы учебной работы		

2.2 Общие критерии оценки хода и результатов изучения учебной дисциплины

1. Формальный критерий получения обучающимися положительной оценки по итогам изучения дисциплины:				
1.1 Предусмотренная программа изучения дисциплины обучающимся выполнена полностью до начала процесса промежуточной аттестации	1.2 По каждой из предусмотренных программой видов работ по дисциплине обучающийся успешно отчитался перед преподавателем, демонстрируя при этом должный (не ниже минимально приемлемого) уровень сформированности элементов компетенций			
2. Группы неформальных критериев				
качественной оценки работы обучающегося в рамках изучения дисциплины:				
2.1 Критерии оценки качества хода процесса изучения обучающимся программы дисциплины (текущей успеваемости)	2.2. Критерии оценки качества выполнения конкретных видов ВАРС			
2.3 Критерии оценки качественного уровня итоговых результатов изучения дисциплины	2.4 . Критерии аттестационной оценки качественного уровня результатов изучения дисциплины			

2.3 PEECTP элементов фонда оценочных средств по учебной дисциплине

Оценочное средство или его элемент
Наименование
2
Тестовые вопросы для проведения входного контроля
Критерии оценки ответов на тестовые вопросы входного контроля
Примерные вопросы для выполнения индивидуального задания
Критерии оценки индивидуального задания
RODDOCKI DDG COMOCTOGTEDI HOTO MOVIDHING TEMLI
Вопросы для самостоятельного изучения темы
Общий алгоритм самостоятельного изучения темы
Критерии оценки самостоятельного изучения темы
Вопросы для самоподготовки к лабораторным занятиям
Тестовые вопросы для проведения текущего контроля
Критерии оценки ответов на тестовые вопросы текущего контроля
Примерные вопросы для проведения заключительного тестирования
Пример билета заключительного тестирования
Критерии оценки ответов на тестовые вопросы по итогам освоения
дисциплины

2.4 Описание показателей, критериев и шкал оценивания и этапов формирования компетенций в рамках дисциплины

				і шкал оценивания и эта	Уровни сформировані	· · · · · · · · · · · · · · · · · · ·	Huodanianis.	
				компетенция не сформирована	минимальный	средний	высокий	
					Оценки сформировані	ности компетенций		
				2	3	4	5	
				Оценка	Оценка	Оценка «хорошо»	Оценка «отлично»	
				«неудовлетворительно»	«удовлетворительно»	•	-	
	Код			<i>></i>	Сарактеристика сформирс	ванности компетенции	•	Формы и
Индекс и	индикато		Показатель	Компетенция в полной	Сформированность	Сформированность	Сформированность	средства
название	ра	Индикаторы	оценивания –	мере не сформирована.	компетенции	компетенции в целом	компетенции	контроля
компетенц	достижен	компетенции	знания, умения,	Имеющихся знаний,	соответствует	соответствует	полностью	формировани
ИИ	ий	компстенции	навыки	умений и навыков	минимальным	требованиям.	соответствует	я
VIVI	компетен		(владения)	недостаточно для	требованиям.	Имеющихся знаний,	требованиям.	и компетенций
	ции			решения практических	Имеющихся знаний,	умений, навыков и	Имеющихся знаний,	компетенции
				(профессиональных)	умений, навыков в	мотивации в целом	умений, навыков и	
				задач	целом достаточно для	достаточно для	мотивации в полной	
					решения практических	решения стандартных	мере достаточно для	
					(профессиональных)	практических	решения сложных	
					задач	(профессиональных)	практических	
						задач	(профессиональных)	
							задач	
					ценивания			
		Полнота	Знает	Обучающийся не знает	Знает основные	Свободно	В совершенстве	
		знаний	- технические	значительной части	понятия в вопросах	ориентируется в	владеет понятийным	
			возможности	- технических	технических	основных вопросах	аппаратом в вопросах	
			современного	возможностей	возможностей	технических	технических	
			специализирова	современного	современного	возможностей	возможностей	Рубежный
			нного	специализированного	специализированного	современного	современного	контроль по
			оборудования,	оборудования, методов	оборудования и	специализированного	специализированного	разделам
			методы решения	решения задач	методы решения	оборудования и	оборудования и	дисциплины;
			задач	профессиональной	задач	методах решения	методов решения	Индивидуаль
			профессиональн	деятельности допускает	профессиональной	задач	задач	ное задание;
ОПК-4	ИД-1 _{ОПК-4}		ой деятельности.	существенные ошибки в	деятельности.	профессиональной	профессиональной	Заключитель
0	FIA TOTIK-4			ответах	В ответах на вопросы	деятельности.	деятельности.	ное
					есть неточности,	При решении задач	_	тестирование
					ошибки в решении	допускает	При ответе все	по
					задач.	малозначительные	задания выполнены	результатам
						неточности.	полностью, грамотно	освоения
							оформлены и не	дисциплины
							содержат ошибок.	
		Наличие	VMOOT	Обущающийся на учест	Обущающийся	Обущающийся	Обущающийся	
			Умеет	Обучающийся не умеет	Обучающийся	Обучающийся	Обучающийся свободно справляется	
		умений	использовать	решать расчётные	испытывает	допускает	· · · · ·	
1	1		знания в	задачи или применить	затруднения при	малозначительные	с поставленными	

	обпостах умими	TOODOTHUOCKIAO 211211IAG	DOLLIOUMA DOCLIÖTLILIV M	HOTOLIHOCTIA B DOLLIOLIMIA	22 02 12 14 14	
	областях химии	теоретические знания	решении расчётных и	неточности в решении	задачами,	
	для проведения	для проведения		задач, при	обосновывает	
	эксперименталь	экспериментальных	при проведении	проведении	принятые решения,	
	ных	исследований и	экспериментальных	экспериментальных	проводит	
	исследований и	интерпретации их	исследований и	исследований и	экспериментальные	
	интерпретации	результатов.	интерпретации их	интерпретации их	исследования и	
	их результатов		результатов	результатов	интерпретирует их	
					результаты,	
					показывая при этом	
					знания	
					дополнительного	
					материала.	
Наличие	Владеет	Не владеет навыками	Обучающийся	Обучающийся	Обучающийся	
навыков	навыками	выполнения основных	владеет навыками	владеет навыками	владеет навыками	
(владение	выполнения	химических	выполнения основных	выполнения основных	выполнения основных	
опытом)	ОСНОВНЫХ	лабораторных операций.	лабораторных	лабораторных	лабораторных	
OTIBITOM)		лаоораторных операции.	' '		операций, обработки	
	химических		операций	p		
	лабораторных		(растворение,	использования	результатов	
	операций, в т.ч.		фильтрование,	лабораторного	эксперимента,	
	C		нагревание и т.д)	оборудования при	сравнения их с	
	использованием			проведении	данными литературы	
	приборно-			химических	и интерпритации	
	инструментальн			исследований;	результатов	
	ой базы.				химических	
					исследований	

ЧАСТЬ 3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков, характеризующих этапы формирования компетенций

Часть 3.1. Типовые контрольные задания, необходимые для оценки знаний, умений, навыков

3.1.1 . ВОПРОСЫ для проведения входного контроля

Входной контроль проводится в рамках лабораторных занятий с целью выявления реальной готовности студентов к освоению данной дисциплины за счет знаний, умений и компетенций, сформированных в курсе химии, изучаемом в средней школе. Входной контроль разрабатывается при подготовке рабочей программы учебной дисциплины. Входной контроль проводится в форме тестирования.

ПРИМЕРНЫЕ ВОПРОСЫ

 Химической реакцией является плавление металлов сжижение воздуха Массовая доля лития будет наименьшей в соединении Li₂Te Li₂Se Формула водородного соединения элемента, образующего высший оксид Э₂О₇, имеет вид ЭН₃ ЭН₄ НЭ Укажите формулы высшего оксида и соединения с кальцием элемента X, максимальная стескисления которого равна +5. X₂O₃, Ca₃X₂ X₂O₅, Ca₃X₂ X₂O₅, Ca₅X₂ X₂O₅, Ca₅X₂ 	
 Li₂Te Li₂Se Li₂Se	
 ЭН₃ НЭ НЭ НЭ НЭ Н2 Укажите формулы высшего оксида и соединения с кальцием элемента X, максимальная сте окисления которого равна +5. Х₂О₃, Ca₃X₂ Х₂О₅, Ca₃X₂ Х₂О₅, Ca₅X₂ Х₂О₅, Ca₅X₂ 	
окисления которого равна +5. 1) X ₂ O ₃ , Ca ₃ X ₂ 3) X ₂ O ₅ , Ca ₃ X ₂ 2) X ₂ O ₅ , CaX ₂ 4) X ₂ O ₅ , Ca ₅ X ₂	
	епень
 5. Каким веществом надо подействовать на железо, чтобы получить хлорид железа (II)? 1) Cl₂ 3) ZnCl₂ 2) HCl 4) КСІО₃ 	
6. Если оксид растворяется в воде, то 1) это основный оксид 2) это кислотный оксид 4) на основании этих данных нельзя сделать вы о кислотно-основных свойствах оксида	вод
 7. Химическая реакция возможна между 1) Си и HCl 2) Fe и Na₃PO₄ 3) Ag и Mg(NO₃)₂ 4) Zn и FeCl₂ 	
 8. Электронную конфигурацию 1s²2s²2p⁶3s²3p⁶4s¹3d⁵ имеет атом 1) молибдена 2) хрома 3) калия 4) меди 	
9. В периодах с увеличением порядкового номера электроотрицательность элементов 1) увеличивается 3) изменяется периодически 2) не изменяется 4) уменьшается	
10. Четыре ковалентные связи содержит молекула 1) CO_2 3) C_2H_6 2) C_2H_4 4) C_3H_4	
11. Кристалл алмаза состоит из 1) двухатомных молекул 3) положительных и отрицательных ио углерода 2) положительных ионов углерода С ⁴⁺ , 4) атомов углерода, соединенных кова	

	В какой системе увеличение давления смеща кции?	ет х	имическое равновесие в сторону продуктов
	$2SO_{2(r)} + O_{2(r)} \leftrightarrow 2SO_{3(r)}$	3)	$CO_{2(r)} + 2C_{(TB.)} \leftrightarrow 2CO_{(r)}$
	$N_{2(r)} + O_{2(r)} \leftrightarrow 2NO_{(r)}$		$2NH_{3(r)} \leftrightarrow N_{2(r)} + 3H_{2(r)}$
,		,	207
	При обычных условиях с наименьшей скорость	ЮΠ	ротекает реакция между
	Fe и O ₂		Na и O ₂
2)	CaCO ₃ и HCl(p-p)	4)	$Na_2SO_4(p-p)$ и $BaCl_2(p-p)$
	В соответствии с термохимическим уравнение		
	целится 1408 кДж теплоты, если в реакции учас [.]	-	·
	1,5 моль		4,5 моль
2)	3 моль	4)	6 моль
15.	Реакция, уравнение которой $CaCO_{3(\kappa)} \longrightarrow C$	aO	$_{(K)} + CO_{2(\Gamma)} - Q$, относится к реакциям
	соединения, экзотермическим		соединения, эндотермическим
2)	разложения, эндотермическим	4)	разложения, экзотермическим
	В качестве катионов только ионы Н ⁺ образуютс		
	NaOH		H ₂ SO ₄
2)	NaH ₂ PO ₄	4)	NaHSO ₄
4-	0 2+ 00 2-		0.00
	Сокращенное ионное уравнение $Ca^{2+} + CO_3^{2-}$		
	хлорида кальция и карбоната натрия		гидроксида кальция и углекислого газа
2)	сульфида кальция и углекислого газа	4)	фосфата кальция и карбоната калия
10	VIACENTO COORNIMACOT POETILITĂ DOCTROD		
	Кислую среду имеет водный раствор	3/	Na ₂ CO ₃
	Na ₃ PO ₄		ZnSO ₄
۷)	KCI	4)	211304
19.	Гидролизу по катиону подвергается соль		
	NH ₄ NO ₃	3)	K ₂ SO ₄
	Na ₃ PO ₄		CaCl ₂
-,		-,	3.3.2
20.	Масса воды (в граммах), в которой надо раств	ори	ть 50 г хлорида калия для получения 10%-ного
•	створа, равна		
,	50	,	500
2)	450	4)	4500
04	V		
	Химические реакции, протекающие с изменен	ием	и степени окисления элементов, входящих в
	став реагирующих веществ, называют	3/	TODMOVIANIALIOCICIANIA
	обменными	3)	термохимическими
۷)	ИОННЫМИ	4)	окислительно-восстановительными
22	Общая сумма коэффициентов в уравнении ре	акі	ии KClO₂ → KCl + O₂ равна
1)	4	3)	7
2)	5	4)	3
,		,	
23.	Восстановителем в уравнении реакции AsH ₃	+ A	$AgNO_3 + H_2O $ ® $H_3AsO_4 + Ag^- + HNO_3$ является
1)	AsH ₃	3)	H_2O
2)	$AgNO_3$	4)	H_3AsO_4
	16		
	Кислотными являются гидроксиды		
	серы (VI)		азота (III)
2)	олова (IV)	4)	железа (III)
25	Votoupputo controllerous Manual de Sur la controllerous de Sur la controllerou		OTRO IA OFO FINALIGIFICACIONE LO VICENCIA CONTRA CO
	Установите соответствие между формулой ве ассу (группе) неорганических соединений.	щес	лва и его принадлежностью к определенному
V) IC	Формула вещества		Класс (группа) неорганических соединений
1	+ opiniyi ia bamaa iba		is ass (ipythia) hoopidilli lookin oocaliicillii

1) CrO	1) кислота
2) H ₃ BO ₃	2) основание
	3) основный оксид
	4) амфотерный оксид

26. Установите соответствие между реагентами и ионно-молекулярным уравнением реакции.

Реагенты	Ионно-молекулярное уравнение
1) NaOH + HNO ₃	1) CO ₃ ²⁻ + H ₂ O = HCO ₃ ⁻ + OH ⁻
2) Na ₂ CO ₃ + HCl	2) OH ⁻ + H ⁺ = H ₂ O
	3) $CO_3^{2-} + CO_2 + H_2O = 2HCO_3^{-}$
	4) $CO_3^{2-} + 2H^+ = CO_2 + H_2O$

27. Установите соответствие между солью и реакцией среды в ее водном растворе

Соль	Реакция среды
1) нитрат бария	1) слабощелочная
2) хлорид железа (III)	2) нейтральная
	3) кислая
	4) щелочная

28. Установите соответствие между исходными веществами и продуктами, которые преимущественно

образуются в ходе реакций.

Исходные вещества	Продукты реакции
1) Cu + HNO₃(конц.) →	1) Cu(NO ₃) ₂ + NO ₂ + H ₂ O
2) Cu + HNO₃(pas6.) →	2) Cu(NO ₃) ₂ + NO+ H ₂ O
	3) Cu(NO ₃) ₂ + H ₂
	4) реакция не протекает

- 29. Написать уравнения реакций, с помощью которых можно осуществить превращения $Ca \rightarrow Ca(OH)_2 \rightarrow CaCO_3 \rightarrow CaCl_2$
- 30. Написать уравнения реакций, с помощью которых можно осуществить превращения и указать условия их протекания

$$C_2H_6 \rightarrow C_2H_5Br \rightarrow C_2H_5OH \rightarrow CH_3COOC_2H_5$$

- 31. 100 г раствора гидроксида натрия нейтрализовали 15 г 10% раствора уксусной кислоты. Массовая доля гидроксида натрия в исходном растворе равна _____%.
- 32. Веществом, неядовитым для человека, является

3) CO 1) N₂ 2) H₂S 4) Cl₂

33. Относительная плотность бутана по фтору равна

3) 1,53 1) 0,33

4) 3,05 2) 0,655

34. К числу амфотерных окисдов относятся..

1) SiO₂, CO₂ 3) $Cr_2O_{3,}$, Al_2O_3 2) BeO, N₂O₅ 4) Na₂O. Cl₂O

- 35. Укажите вещество, в котором атом азота имеет наименьшую степень окисления:
- 1) NaNO₂ 3) N₂O₅ 4) Na₃N 2) N_2O_3

1)	FeCl ₃ , HBr, NH ₄ HCO ₃ NaCl, H ₂ S, AlCl ₃	3)	HNO ₃ , K ₂ SO ₄ , Cu(OH) ₂ ZnSO ₄ , CuSO ₄ , Li ₂ SO ₄
1)	Оксид серы (VI) взаимодействует с каждым из вода и соляная кислота кислород и оксид магния	3)	х веществ: оксид кальция и гидроксид натрия вода и медь
1)	Иону N^{3+} соответствует электронная конфигур $1s^22s^22p^3$ $1s^22s^22p^0$	3)	я 1s ² 2s ² 2p ⁶ 1s ² 2s ² 2p ⁵
1)	Радиус атомов уменьшается в ряду элементо Вг, F, Cl P, As, Sb	3)	Li, Na, K Se, S, O
1)	Ионная связь образуется между элементами. К и Cl Н и C	3)	СиОРиО
1)	Какую из перечисленных молекул легче всего $O = O$ $I - I$	3)	ложить на атомы? С≡О Н−Н
обр 1)	Химическое равновесие в системе 2NO _(г) азования продукта реакции при повышении давления повышении температуры	3)	2 (r) ₹ 2NO _{2 (r)} + Q смещается в сторону понижении давления применении катализатора
43. 1)		еза 3)	с хлороводородной (соляной) кислотой следует повысить давление увеличить концентрацию HCI
2A	В результате реакции, термохимическое урав $gNO_{3(тв)} = 2Ag_{(тв)} + 2NO_{2(r)} + O_{2(r)} - 317$ кДж, пог сса выделившегося серебра равна		
1)	1,08 г 54 г	,	5,4 г 10,8 г
1)	Тепловой эффект химической реакции <u>не заві</u> природы исходных веществ промежуточных стадий получения веществ	<u>исит</u>	от 3) агрегатного состояния исходных веществ 4) агрегатного состояния продуктов реакции
1)	Диссоциация по трем ступеням возможна в рас хлорида алюминия нитрата алюминия	3)	ре ортофосфата калия ортофосфорной кислоты
1)	Сокращенное ионное уравнение реакции Al ³⁺ хлорида алюминия с водой алюминия с водой	3)	OH¯ = Al(OH)₃□ соответствует взаимодействию хлорида алюминия со щелочью алюминия со щелочью
1)	Среда раствора карбоната калия щелочная кислая		нейтральная слабокислая
1)	И анион, и катион подвергаются гидролизу в р силикат натрия сульфид аммония	3)	воре соли ацетат калия хлорид меди (II)
1)	Сколько сахарозы (грамм) содержится в 200 г 15 30		%-ного раствора. 150 7,5

- 51. Любая окислительно-восстановительная реакция включает два процесса:
- 1) гидролиз и диссоциацию

3) окисление и восстановление

2) ионизацию и диссоциацию

- 4) выделение или поглощение тепла
- 52. Общая сумма коэффициентов в левой части уравнения реакции $Cu + H_2SO_4$ (конц) $\rightarrow CuSO_4 + SO_2$ + Н₂О равна ...
- 1) 6

2) 4

4) 3

- 53. Окислителем в реакции $P + KClO_3 = P_2O_5 + KCl$ является
- 1) P

 P_2O_5

2) KCI

KCIO₃

54. При непосредственном взаимодействии оксидов с водой образуются вещества, формулы которых

1) HNO₃
 2) Fe(OH)₃

3) H₂SiO₃

КОН

55. Установите соответствие между названием вещества и классом (группой) веществ, к которому(-ой) оно принадлежит.

Вещество	Класс (группа) веществ
1) гидроксид хрома (VI)	1) кислота
2) гидросульфат кальция	2) основание
	3) средняя соль
	4) кислая соль

56. Установите соответствие между реагентами и ионно-молекулярным уравнением реакции

ус. Установите есетвететвие между реагентами и испне межекулирным уравнением реакции.	
Реагенты	Ионно-молекулярное уравнение
1) Na ₂ CO ₃ + CO ₂ + H ₂ O	1) CO ₃ ²⁻ + H ₂ O = HCO ₃ ⁻ + OH ⁻
2) CaCO ₃ + HCl	2) $CaCO_3 + 2H^+ = Ca^{2+} + H_2O + CO_2$
	3) $CO_3^{2-} + CO_2 + H_2O = 2HCO_3^{-}$
	4) $CO_3^{2-} + 2H^+ = CO_2 + H_2O$

57. Установите соответствие межлу формулой соли и средой ее волного раствора

Формула соли	Среда раствора
1) K ₂ SO ₄	1) слабощелочная
2) CrCl ₃	2) нейтральная
	3) кислая
	4) щелочная

58. Установите соответствие между реагентами и схемами превращений элемента серы

Реагенты	Схемы превращений
1) сера и кислород	1) S ⁰ > S ⁺⁴
2) серная кислота (конц) и медь	2) S ⁻² → S ⁺⁴
	$3) S^0 \longrightarrow S^{-2}$
	4) $S^{+6} \longrightarrow S^{+4}$

- 59. Написать уравнения реакций, с помощью которых можно осуществить превращения $S \rightarrow SO_2 \rightarrow SO_3 \rightarrow H_2SO_4$
- 60. Установите соответствие между формулой вещества и его принадлежностью к определенному классу (группе) неорганических соединений.

Формула вещества	Класс (группа) неорганических соединений
1) CrO ₃	1) кислотный оксид
2) K ₃ [Fe(CN) ₆]	2) амфотерный оксид
	3) основание
	4) соль

61. Установите соответствие между исходными веществами, вступающими в реакции обмена, и сокращенными ионными уравнениями этих реакций.

Исходные вещества	Сокращённые ионные уравнения
1) H ₂ SO ₄ и BaCl ₂	1) 2H ⁺ + 2CΓ = 2HCl
2) Ba(OH) ₂ и K ₂ CO ₃	2) 2K ⁺ + OH ⁻ = 2KOH
	3) $Ba^{2+} + SO_4^{2-} = BaSO_4$
	4) $Ba^{2+} + CO_3^{2-} = BaCO_3$

ШКАЛА И КРИТЕРИИ ОЦЕНКИ ответов на вопросы входного контроля

- оценка «отлично» выставляется обучающемуся, если получено более 81% правильных ответов.
- оценка «хорошо» получено от 71 до 80% правильных ответов.
- оценка «удовлетворительно» получено от 61 до 70% правильных ответов.
- оценка «неудовлетворительно» получено менее 61% правильных ответов.

3.1.2. Средства для индивидуализации выполнения, контроля фиксированных видов ВАРС

ВЫПОЛНЕНИЕ И СДАЧА ИНДИВИДУАЛЬНОГО ЗАДАНИЯ - ИЗ

Место индивидуального задания в структуре дисциплины

Учебные цели, на достижение которых ориентировано выполнение индивидуального задания: закрепить и углубить знания, полученные на аудиторных занятиях, научиться решать ситуационные задачи, определить конечный результат в обучении по данной теме или разделу.

Учебные задачи, которые должны быть решены студентом в рамках выполнения индивидуального задания:

- систематизация знаний, формирование и отработка навыков химического исследования, накопление опыта работы с учебной и научной литературой;
- совершенствование в изложении своих мыслей, самостоятельного построения структуры работы, постановки задач, раскрытие основных вопросов, умение сформулировать логические выводы и предложения.

При выполнении индивидуального задания студенты могут использовать любые учебные пособия, консультации с преподавателем. Каждому студенту дается свой вариант работы. Работа выполняется в отдельной (не рабочей) тетради для индивидуальных работ. Выполненная работа в установленный срок передаётся на кафедру преподавателю для проверки. Преподаватель проверяет ее и делает соответствующую отметку: «зачтено» или «не зачтено». Если работа не зачтена, то она передается студенту для доработки. Доработанный вариант работы вновь направляется на проверку преподавателю.

Перечень тем индивидуального задания

- Классификация неорганических соединений
- Общие закономерности протекания химических реакций.
- Растворы
- Электрохимические процессы

Примерные задания индивидуальной работы

Задание 1. Написать в молекулярной форме уравнения реакций, протекающих по схеме, расставить стехиометрические коэффициенты, назвать полученные соединения.

Цепочка превращений
$PbO \rightarrow Pb(NO_3)_2 \rightarrow Pb(OH)_2 \rightarrow Na_2 [Pb(OH)_4] \rightarrow PbSO_4$
$Sn \to SnCl_2 \to Sn(OH)_2 \to K_2[Sn(OH)_4] \to Sn(NO_3)_2$
$AI \to AI_2(SO_4)_3 \to AI(OH)_3 \to Na_3[AI(OH)_6] \to AICI_3$
$Fe \rightarrow FeCl_2 \rightarrow Fe(OH)_2 \rightarrow Fe(OH)NO_3 \rightarrow Fe(NO_3)_2$
$Cu \rightarrow CuSO_4 \rightarrow Cu(OH)_2 \rightarrow (CuOH)_2SO_4 \rightarrow CuSO_4$
$Ni \rightarrow NiSO_4 \rightarrow Ni(OH)_2 \rightarrow NiOHCI \rightarrow NiCl_2$
$CaO \to Ca(OH)_2 \to Ca(H_2PO_4)_2 \to Ca_3(PO_4)_2 \to CaCl_2$
$Cr_2(SO_4)_3 \rightarrow Cr(OH)_3 \rightarrow Na_3[Cr(OH)_6] \rightarrow CrCl_3 \rightarrow Cr(NO_3)_3$
$BeO \rightarrow BeCl_2 \rightarrow Be(OH)_2 \rightarrow K_2[Be(OH)_4] \rightarrow BeSO_4$
$CaO \rightarrow CaCO_3 \rightarrow Ca(HCO_3)_2 \rightarrow CaCO_3 \rightarrow CaCl_2$
$H_3PO_4 \to Ca(H_2PO_4)_2 \to CaHPO_4 \to Ca_3(PO_4)_2 \to Ca(NO_3)_2$
$PbO \rightarrow Na_2[Pb(OH)_4] \rightarrow Pb(NO_3)_2 \rightarrow Pb(OH)_2 \rightarrow PbOHCI$
$CrCl_3 \rightarrow Cr(OH)_3 \rightarrow CrOHSO_4 \rightarrow Cr_2(SO_4)_3 \rightarrow Cr(OH_3)_3$
$Zn \rightarrow ZnO \rightarrow Zn(NO_3)_2 \rightarrow Zn(OH)_2 \rightarrow Na_2[Zn(OH)_4]$
$Si \rightarrow Na_2SiO_3 \rightarrow H_2SiO_3 \rightarrow SiO_3 \rightarrow CaSiO_3$
$CaCO_3 \rightarrow CaO \rightarrow Ca(OH)_2 \rightarrow CaCO_3 \rightarrow Ca(NO_3)_2$
$Fe_2O_3 \rightarrow Fe_2(SO_4)_3 \rightarrow Fe(OH)_3 \rightarrow Fe_2O_3 \rightarrow Fe$
$C \rightarrow CO_2 \rightarrow MgCO_3 \rightarrow CO_2 \rightarrow K_2CO_3 \rightarrow KHCO_3$
$P \rightarrow P_2O_5 \rightarrow H_3PO_4 \rightarrow Ca_3(PO_4)_2 \rightarrow Ca(H_2PO_4)_2$
$Cu(NO_3)_2 \rightarrow CuO \rightarrow CuSO_4 \rightarrow Cu(OH)_2 \rightarrow CuO$
$Fe(NO_3)_2 \rightarrow Fe_2O_3 \rightarrow FeCI_3 \rightarrow Fe(OH)_3 \rightarrow Fe_2O_3 \rightarrow Fe$
$MgCO_3 \rightarrow MgO \rightarrow MgCI_2 \rightarrow Mg(OH)_2 \rightarrow Mg(NO_3)_2 \rightarrow MgCO_3$
$AI \rightarrow AICI_3 \rightarrow AI(OH)_3 \rightarrow AI_2(SO_4)_3 \rightarrow AI(NO_3)_3$
$CaCO_3 \to CaCl_2 \to Ca(OH)_2 \to CaCO_3 \to Ca(HCO_3)_2$
$ZnO \rightarrow Zn(OH)_2 \rightarrow ZnSO_4 \rightarrow Zn(OH)_2 \rightarrow ZnO \rightarrow Zn(NO_3)_2$

Задание 2. Определить: название, координационное число (к.ч.), величину и заряд комплексообразователя, заряд комплексного иона, лиганды в следующих комплексных соединениях:

Комплексные соединения
$K_2[Hgl_4], [Co(NH_3)_5H_2O]Cl_3, K_4[Fe(CN)_6]$
$K_2[PtCl_6], [Cr(H_2O)_4Cl_2] NO_3, K_3[Co(NO_3)_6]$
$K[AuCl_4]$, $Na_3[Fe(CN)_6]$, $K_2[Hg(SCN)_4]$
$Na_3[Ag(S_2O_3)_2], [Ag(NH_3)_2]SO_4, [Cu(NH_3)_4]SO_4$
[Cr(H2O)6]Cl3, $[Zn(NH3)4]SO4$, $Na3[AIF6]$
$H[BF_4]$, $[Ni(NH_3)_6]SO_4$, $[Fe(CO)_5]^0$
[Ag(NH ₃) ₂]OH, H[AgCl ₄], [Pt(NH ₃) ₂ Cl ₂] ⁰
$[Ni(NH_3)_6](OH)_2$, $[Cr(H_2O)_3CI_3]NO_3$, $Na_3[ZrF_7]$
$[Co(H_2O)_6]SO_4$, $[Cu(NH_3)_4](OH)_2$, $K[Cr(H_2O)_2CI_4]$
$[Pt(NH_3)_6]CI, [Co(NH_3)_4(NO_2)_2]NO_3, [Cr(H_2O)_4CI_2]NO_3$
$K_2[HgI_4]$, $Na_2[Sn(OH)_4]$, $H_2[PtCI_6]$
$[Ag(NH_3)_2]NO_3$, $[Cu(NH_3)_4]SO_4$, $H[AuCl_4]$
[Cr(H2O)6]Cl2, K3[Co(NO2)6], Na[Al(OH)4]
$K[Ag(CN)_2]$, $[Ni(NH_3)_6](OH)_2$, $Na[Al(OH)_4]$
$[Cd(NH_3)_4]SO_4, K_2[Ni(CN)_4], [Ag(NH_3)_2]NO_2$

Задание 3. Вычислить $\Delta H^0_{x,p}$, $\Delta S^0_{x,p}$, $\Delta G^0_{x,p}$ реакций, протекающих по уравнениям

Реакция
$2H_2S_{(r)} + SO_{2(r)} = 3S_{(\kappa p)} + 2H_2O_{(r)}$
$2H_2S_{(r)} + 3O_{2(r)} = 2SO_{2(r)} + 2H_2O_{(r)}$
$2PbS_{(Kp)} + 3O_{2(r)} = 2 PbO_{(Kp)} + 2SO_{2(r)}$
$S_{(KD)} + 2H_2SO_{4(K)} = 3SO_{2(\Gamma)} + 2H_2O_{(K)}$
$4HF_{(r)} + SiO_{2(Kp)} = SiF_{4(r)} + 2H_2O_{(Kp)}$
$2NH_{3(r)} + 3CuO_{(kp)} = 3Cu_{(kp)} + N_{2(r)} + 3H_2O_{(r)}$

$2NH_{3(r)} + 3Br_{2(x)} = 6HBr_{(r)} + N_{2(r)}$
$3C_{(KD)} + 4HNO_{3(K)} = 3CO_{2(\Gamma)} + 4NO_{(\Gamma)} + 2H_2O_{(K)}$
$Fe_2O_{3(kp)} + 3CO_{(r)} = 2Fe_{(kp)} + 3CO_{2(r)}$
$Fe_2O_{3(Kp)} + CO_{(r)} = 2FeO_{(Kp)} + CO_{2(r)}$
$Cu_2S_{(Kp)} + 2O_{2(r)} = 2CuO_{(Kp)} + SO_{2(r)}$
$2CuO_{(Kp)} + Cu_2S_{(Kp)} = 4Cu_{(Kp)} + SO_{2(\Gamma)}$
$2Fe_{(KD)} + 2H_2S_{(\Gamma)} + O_{2(\Gamma)} = 2FeS_{(KD)} + 2H_2O_{(\Gamma)}$
$2Fe_{(KD)} + 3SO_{2(\Gamma)} + 3O_{2(\Gamma)} = Fe_2(SO_4)_{3(KD)}$
$2CH_{4(r)} + O_{2(r)} + 2H_2O_{(x)} = 2CO_{2(r)} + 6H_{2(r)}$
$CO_{(\Gamma)} + H_2O_{2(K)} = CO_{2(\Gamma)} + H_2O_{(K)}$
$C_2H_5OH_{(m)} + 3O_{2(r)} = 2CO_{2(r)} + 3H_2O_{(m)}$
$TiO_{2 (Kp)} + 2CI_{2 (\Gamma)} + C_{(Kp)} = TiCI_{4 (K)} + CO_{2(\Gamma)}$
$FeS_{(\kappa p)} + 2HCI_{(r)} = FeCI_{2(\kappa p)} + H_2S_{(r)}$
$2Fe_{(KD)} + 3SO_{2(\Gamma)} + 3O_{2(\Gamma)} = Fe_2(SO_4)_{3(KD)}$
$KNO_{2(Kp)} + H_2O_{2(K)} = KNO_{3(Kp)} + H_2O_{(K)}$
$2Fe(OH)_{3 \text{ (kp)}} = Fe_2O_{3 \text{ (kp)}} + 3H_2O_{\text{(xc)}}$
$4Fe_{(KD)} + 3O_{2(\Gamma)} + 6H_2O_{(\Gamma)} = 4 Fe(OH)_{3(KD)}$
$FeS_{(KD)} + 2HCI_{(r)} = FeCI_{2(KD)} + H_2S_{(r)}$
$4HNO_{3(x)} = 4NO_{2(r)} + O_{2(r)} + 2H_2O_{(x)}$

Задание 4. Рассчитать константу равновесия.

- Определить, является ли система гомогенной или гетерогенной, как изменится скорость прямой и обратной реакции при увеличении давления равновесной системы, при уменьшении концентрации реагирующих веществ.

- Определить исходные концентрации реагирующих веществ.

определить исходные концентрации реагирующих веществ.				
Система	Равновесные	Увеличение	Уменьшение	
	концентрации	давления	концентрации	
	веществ	равновесной	реагирующих	
		системы	веществ	
$CO_{2(\Gamma)} + C_{(TB)} \leftrightarrow 2CO_{(\Gamma)}$	2 моль/л	в 2,5 раза	в 3,5 раза	
$2NO_{(r)} + O_{2(r)} \leftrightarrow 2NO_{2(r)}$	2,5 моль/л	в 3,5 раза	в 3 раза	
$2SO_{2(r)} + O_{2(r)} \leftrightarrow 2SO_{3(r)}$	2 моль/л	в 2,5 раза	в 2,5 раза	
$CH_{4(r)}+CO_{2(r)} \leftrightarrow 2CO_{(r)}+2H_{2(r)}$	2 моль/л	в 3,5 раза	в 2,2 раза	
$CO_{(r)} + H_2O_{(r)} \leftrightarrow CO_{2(r)} + H_{2(r)}$	3 моль/л	в 4,5 раза	в 2,5 раза	
$S_{(\kappa)} + O_{2(r)} \leftrightarrow SO_{2(r)}$	2 моль/л	в 2,5 раза	в 3,5 раза	
$NH_{3(r)}+HCI_{(r)} \leftrightarrow NH_4CI_{(\kappa)}$	3 моль/л	в 3 раза	в 3 раза	
$2SO_{2(r)} + O_{2(r)} \leftrightarrow 2SO_{3(r)}$	2 моль/л	в 3 раза	в 2,5 раза	
$PCI_{5(r)} \leftrightarrow PCI_{3(r)} + CI_{2(r)}$	3 моль/л	в 3 раза	в 2 раза	
$Fe_3O_4_{(K)} + CO_{(\Gamma)} \leftrightarrow 3FeO_{(K)} + CO_{2(\Gamma)}$	2 моль/л	в 3 раза	в 2 раза	
$2H_{2(r)} + O_{2(r)} \leftrightarrow 2H_2O_{(r)}$	2 моль/л	в 3 раза	в 4 раза	
$C_{(rpa\phi\mu\tau)} + O_{2(r)} \leftrightarrow CO_{2(r)}$	2 моль/л	в 3 раза	в 3 раза	
$CO_{(r)} + H_2O_{(r)} \leftrightarrow CO_{2(r)} + H_{2(r)}$	3 моль/л	в 2 раза	в 2 раза	
$2SO_{2(r)} + O_{2(r)} \leftrightarrow 2SO_{3(r)}$	3 моль/л	в 3 раза	в 2 раза	
$C_{(TB.)} + H_2O_{(r)} \leftrightarrow CO_{(r)} + H_{2(r)}$	3 моль/л	в 3 раза	в 2 раза	
$H_{2(r)} + CO_{2(r)} \leftrightarrow CO_{(r)} + H_2O_{(r)}$	2 моль/л	в 2 раза	в 3 раза	
$2NO_{(r)} + O_{2(r)} \leftrightarrow 2NO_{2(r)}$	3 моль/л	в 1,5 раза	в 2 раза	
$C_{(rpa\phi\mu\tau)} + O_{2(r)} \leftrightarrow CO_{2(r)}$	3,5 моль/л	в 2,5 раза	в 3,5 раза	
$S_{(\kappa)} + O_{2(\Gamma)} \leftrightarrow SO_{2(\Gamma)}$	3 моль/л	в 2 раза	в Зраза	
$C_{(rpa\phi ur)} + O_{2(r)} \leftrightarrow CO_{2(r)}$	2 моль/л	в 2 раза	в 3 раза	
$PCI_{5(r)} \leftrightarrow PCI_{3(r)} + CI_{2(r)}$	2 моль/л	в 3 раза	в 2 раза	
$S_{(\kappa)} + O_{2(r)} \leftrightarrow SO_{2(r)}$	3 моль/л	в 2 раза	в 3 раза	
$2SO_{2(r)} + O_{2(r)} \leftrightarrow 2SO_{3(r)}$	3 моль/л	в 3 раза	в 2 раза	
$2NO_{(r)} + O_{2(r)} \leftrightarrow 2NO_{2(r)}$	3 моль/л	в 2 раза	в 3 раза	
$Fe_3O_{4(\kappa)} + CO_{(r)} \leftrightarrow 3FeO_{(\kappa)} + CO_{2(r)}$	2 моль/л	в 3 раза	в 3 раза	

Задание 5. Для приведенных ниже равновесных систем определите, как изменится скорость прямой реакции при изменении температуры на m°C, если дан температурный коэффициент γ. Приведите расчеты.

V	t ⁰
I	•

Система		повышение	понижение
$2NO + O_2 \leftrightarrow 2NO_2$;	2	20	
$N_2 + O_2 \leftrightarrow 2NO;$	2	50	
$2SO_2 + O_2 \leftrightarrow 2SO_3$;	3	30	
$2CO + O_2 \leftrightarrow 2CO_2$;	3	40	
$4HCI + O_2 \leftrightarrow 2H_2O + 2CI_2$	2		20
$C_{(K)} + H_2O \leftrightarrow CO + H_2$	2		40
FeO + CO ↔ Fe + CO ₂	3		20
$N_2O_4 \leftrightarrow 2NO_2$	2	20	
$N_2 + 3H_2 \leftrightarrow 2HN_3$	3	30	
$H_2 + I_2 \leftrightarrow 2HI$	2	50	
4HN ₃ + 5O ₂ ↔ 4NO + 6H ₂ O	3	50	
$CO_2 + C_{(K)} \leftrightarrow 2CO$	3		40
$2H_2 + O_2 \leftrightarrow 2H_2O$	2		20
$PCl_5 \leftrightarrow PCl_3 + Cl_2$	2	30	
$CO + Cl_2 \leftrightarrow COCl_2$	3		50
$CO + H_2O \leftrightarrow CO_2 + H_2$	2		30
$C_{(\text{графит})} + O_2 \leftrightarrow CO_2$	3	40	
$2NO + O_2 \leftrightarrow 2NO_2$	4		50
$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$	3	30	
$S + O_2 \leftrightarrow SO_2$	3	20	
NH ₃ + HCI ↔ NH ₄ CI	2		40
$Fe_3O_4 + CO \leftrightarrow 3FeO + CO_2$	3	30	
$H_2 + CO_2 \leftrightarrow CO + H_2O$	4		20
$2H_2S + SO_2 = 3S + 2H_2O$	3	30	
$2NH_3 + 3Br_2 = 6HBr + N_2$	2,5		40

Задание 6. Рассчитать

- 1. Молярную концентрацию,

Молярную концентрацию эквивалента,
 Моляльную концентрацию,
 Титр указанного раствора по данным, приведенным в таблице.

Раствор	Массовая доля, %	Плотность, г/см ³
FeSO ₄	5,0	1,050
HNO ₃	3,6	1,080
H ₂ SO ₄	6,1	1,012
NaOH	5,9	1,090
КОН	5,7	1,063
KNO ₃	12,5	1,060
HCI	11,0	1,010
HBr	12,0	1,012
HCI	10,0	1,073
H ₂ SO ₄	8,0	1,069
Ag NO₃	11,0	1,043
CaCl ₂	5,0	1,045
КОН	8,0	1,058
HNO ₃	6,0	1,014
CaCl ₂	4,0	1,030
KCI	2,30	1,01
FeSO ₄	8,0	1,15
HNO ₃	11,0	1,021
H ₂ SO ₄	5,0	1,03
HNO ₃	6,1	1,010
KCI	12,0	1,030
H ₂ SO ₄	8,0	1,069
Ag NO ₃	6,1	1,010
FeSO ₄	11,9	1,090

HCI	11,0	1,021

Задание 7.

Составьте уравнения реакций в	Составьте молекулярные уравнения реакций,
молекулярном, полном и кратком	которые соответствуют ионно-молекулярным
ионно-молекулярном виде	
NaHCO₃ и NaOH	$Zn^{2+} + H_2S = ZnS + 2H^+$
K ₂ SiO ₃ и HCl	$Mg^{2+} + CO_3^{2-} = MgCO_3$
BaCl ₂ и Na ₂ SO ₄	$H^{+} + OH^{-} = H_2O$
K₂S и HCl	$Cu^{2+} + S^{2-} = CuS$
FeSO ₄ и (NH ₄) ₂ S	$Pb(OH)_2 + 2OH^{-} = PbO_2^{-2} + 2H_2O$
Cr(OH)₃ и KOH	$SiO_3^{2-} + 2H^+ = H_2SiO_3$
KHCO ₃ и H ₂ SO ₄	$CaCO_3 + 2H^{\dagger} = Ca^{2+} + H_2O + CO_2$
Zn(OH) ₂ и NaOH	$AI(OH)_3 + OH^- = AIO_2^- + 2H_2O$
CaCl ₂ и AgNO ₃	$Pb^{2+} + 2I = PbI_2$
CuSO ₄ и H ₂ S	$Fe(OH)_3 + 3H^+ = Fe^{3+} + 3H_2O$
BaCO ₃ и HNO ₃	$Cd^{2+} + 2OH^{-} = Cd(OH)_{2}$
(NH ₄) ₂ SO ₄ и КОН	$2Bi^{3+} + 3S^{2-} = Bi_2S_3 \downarrow$
ZnO и HCl	$NH_4^+ + OH^- = NH_4OH$
BeSO ₄ и KOH	$CH_3COO^- + H^+ = CH_3COOH$
NH₄Cl и Ba(OH)₂	$Ag^+ + CI^- = AgCI$
CaCl ₂ и K ₂ CO ₃	$Be(OH)_2 + 2OH^{-} = BeO_2^{2-} + 2H_2O$
Pb(NO ₃) ₂ и KI	$Fe(OH)_3 + 2H^+ = FeOH^{2+} + 2H_2O$
CH₃COONa и H₂SO₄	$Ba^{2+} + SO_4^{2-} = BaSO_4$
Al(OH) ₃ и KOH	$Ca^{2+} + CO_3^{2-} = CaCO_3 \downarrow$
CaCl ₂ и K ₃ PO ₄	$HCO_3 + H^{\dagger} = H_2O + CO_2\uparrow$
NaOH и (NH ₄) ₂ SO ₄	$H_2SiO_3 = SiO_3^{2-} + 2H_2O$
FeCl₃ и KOH	$20H^{-} + H_2S = S^{2-} + 2H_2O$
H ₂ SO ₄ и Na ₂ SiO ₃	$Zn^{2+} + H_2S = ZnS + 2H^+$
FeOHCl ₂ и HCl	$HCO_3^- + OH^- = CO_3^{-2-} + H_2O$
Bi(NO ₃) ₃ и H ₂ S	$H^+ + NO_2^- = HNO_2$

Задание 8. Подобрать коэффициенты в уравнения окислительно-восстановительных реакций методом электронного баланса, указать окислитель и восстановитель.

Уравнения реакций
$KMnO_4 + KOH \to K_2MnO_4 + O_2 + H_2O$
$HCIO_4 + SO_2 + H_2O \rightarrow HCI + H_2SO_4$
$H_2S + HCIO \rightarrow S + HCI + H_2O$
$KOH + Cl2 \rightarrow KClO3 + KCl + H2O$
$K_2MnO_4 + H_2O \rightarrow KMnO_4 + MnO_2 + KOH$
$PbS + H_2O_2 \rightarrow PbSO_4 + H_2O$
$KMnO_4 + KI + H_2O \rightarrow MnO_2 + I_2 + KOH$
$H_3PO_3 \rightarrow H_3PO_4 + PH_3$
$Pb(NO_3)_2 \rightarrow PbO + NO_2 + O_2$
$K_2Cr_2O_7 + H_2SO_4 + Na_2SO_3 \rightarrow Cr_2(SO_4)_3 + H_2O + Na_2SO_4 + K_2SO_4$
$As2S3 + HNO3 + H2O \rightarrow H3AsO4 + H2SO4 + NO$
$TiO_2 + C + Cl_2 \rightarrow TiCl_4 + CO$
$NaBrO_3 + H_2SO_4 + NaBr \rightarrow Br_2 + Na_2SO_4 + H_2O$
$Cul_2 + H_2SO_4 + KMnO_4 \rightarrow CuSO_4 + I_2 + MnSO_4 + K_2SO_4 + H_2O$
$H_2S + HNO_3 \rightarrow H_2SO_4 + NO + H_2O$
$Bi_2O_3 + CI_2 + KOH \rightarrow KBiO_3 + KCI + H_2O$
$I_2 + CI_2 + H_2O \rightarrow HIO_3 + HCI$
$P + KOH + H2O \rightarrow PH3 + KH2PO4$
$KIO_3 + KI + H_2SO_4 \rightarrow I_2 + K_2SO_4 + H_2O$
$KMnO_4 + H_2O_2 + H_2SO_4 \rightarrow MnSO_4 + K_2SO_4 + O_2 + H_2O$
$S + NaOH \rightarrow Na_2SO_3 + Na_2S + H_2O$
$K_2SnO_2 + Br_2 + KOH \rightarrow K_2SnO_3 + KBr + H_2O$
NaClO + KI+ $H_2SO_4 \rightarrow NaCl+ I_2+ K_2SO_4+H_2O$
$KMnO_4 + H_2S + H_2SO_4 \rightarrow K_2SO_4 + MnSO_4 + S + H_2O$

 $Cr_2O_3 + KNO_3 + KOH \rightarrow K_2CrO_4 + KNO_2 + H_2O$ $NaBr + H_2 SO_4 \rightarrow Br_2 + Na_2 SO_4 + SO_2 + H_2O$ $H_2S + HNO_3 \rightarrow H_2SO_4 + NO + H_2O$ $KI + H_2SO_{4(KOHU)} \rightarrow K_2SO_4 + H_2S + I_2 + H_2O$ $NaHSO_3 + Cl_2 + H_2O \rightarrow NaHSO_4 + HCl$ $FeSO_4 + KMnO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + MnSO_4 + K_2SO_4 + H_2O_4 + K_2SO_4 + K_2SO_5 + K_2$ $Na_3AsO_3 + I_2 + H_2O \rightarrow Na_3AsO_4 + HI$ $NaCrO_2 + PbO_2 + NaOH \rightarrow Na_2CrO_4 + Na_2PbO_2 + H_2O$ $KMnO_4 + HBr \rightarrow Br_2 + MnBr_2 + H_2O$ $I_2 + CI_2 + H_2O \rightarrow HIO_3 + HCI$ $Cd + KMnO_4 + H_2SO_4 \rightarrow CdSO_4 + MnSO_4 + K_2SO_4 + H_2O_4$ $H_3PO_4 + HCI \rightarrow P + HCIO_3 + H_2O$ $K_2Cr_2O_7 + HCl \rightarrow Cl_2 + CrCl_3 + KCl + H_2O$ $Cu_2O + HNO_3 \rightarrow Cu(NO_3)_2 + NO + H_2O$ $KMnO_4 + KI + H_2O \rightarrow MnO_2 + I_2 + KOH$ $HNO_3 + P + H_2O \rightarrow H_3PO_4 + NO$ $SO_2 + Br_2 + H_2O \rightarrow HBr + H_2SO_4$ $HCIO_3 + H_2SO_3 \rightarrow HCI + H_2SO_4$ $I_2 + HNO_3 \rightarrow HIO_3 + NO + H_2O$ $FeSO_4 + HNO_3 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + NO + H_2O$ $K_2Cr_2O_7 + KI + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + I_2 + K_2SO_4 + H_2O_4$ $HCI + KMnO_4 \rightarrow MnCl_2 + Cl_2 + KCI + \overline{H_2O}$ NaI + NaIO₃ +H₂SO₄ \rightarrow I₂ +Na₂SO₄ + H₂O $Na_2S_2O_3 + Br_2 + NaOH \rightarrow NaBr + Na_2SO_4 + H_2O$ $Mg + H_2SO_{4KOHL} \rightarrow MgSO_4 + H_2S + H_2O$ $Zn + K_2Cr_2O_7 + H_2SO_4 \rightarrow ZnSO_4 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O_4$

3.1.1.2. Шкала и критерии оценивания

- оценка «зачтено» выставляется, если в работе нет ошибок при написании химических формул и уравнений; вычисления выполнены без ошибок; без дополнительных пояснений используются знания, полученные при изучении дисциплины; используется профессиональная терминология.
- оценка «не зачтено» выставляется, если допущено большое количество ошибок в вычислениях и при написании химических формул и уравнений; демонстрируется незнание материала; не используется профессиональная терминология, отсутствуют ссылки на источники информации

3.1.3 Средства для текущего контроля

ВОПРОСЫ для самостоятельного изучения тем

Тема: «Характеристика элементарных частиц, составляющих атом. Состав ядра, изотопы, ядерные реакции, радиоактивность»

- 1). Состав атомного ядра. Характеристики ядра: заряд, масса, энергия связи нуклонов.
- 2). Радиоактивность. Виды радиоактивного излучения.
- 3). Ядерные реакции. Деление ядер. Естественная и искусственная радиоактивность

Тема: «Дисперсные системы. Коллоиды и коллоидные растворы»

- 1). Дисперсные системы, их классификация по степени дисперсности и по агрегатному состоянию.
- 2). Природа коллоидного состояния. Методы получения коллоидных растворов.
- 3). Методы очистки коллоидных растворов.
- 4). Молекулярно-кинетические свойства коллоидных систем (броуновское движение, диффузия, осмотическое давление).
- 5). Механизм образования и строение мицеллы. Причины устойчивости золей.
- 6). Электрокинетические явления: электрофорез и электроосмос.
- 7). Коагуляция золей. Виды устойчивости золей. Факторы устойчивости.
- 8). Влияние электролитов на устойчивость золей. Порог коагуляции. Правило Шульце-Гарди.
- 9). Коагуляция коллоидов смесями электролитов. Взаимная коагуляция золей.

Тема: «Хроматографический анализ»

- 1). Сущность хроматографического метода анализа.
- 2). Классификация методов хроматографии.
- 3). Адсорбционная хроматография, её основы и особенности.
- 4). Понятия: сорбция, десорбция, сорбент, сорбат.
- 5). Особенности физической и химической адсорбции.
- 6). Влияние на адсорбцию веществ свойств сорбента, сорбата и температуры.
- 7). Качественный и количественный анализ.
- 8). Метод градуировочного (калибровочного) графика в количественном анализе.

ОБЩИЙ АЛГОРИТМ самостоятельного изучения темы

- 1) Ознакомиться с рекомендованной учебной литературой и электронными ресурсами по теме (ориентируясь на вопросы для самоконтроля).
- 2) На этой основе составить развёрнутый план изложения темы
- 3) Выбрать форму отчетности конспектов (план конспект, текстуальный конспект, свободный конспект, конспект схема)
- 4) Оформить отчётный материал в установленной форме в соответствии методическими рекомендациями
- 5) Провести самоконтроль освоения темы по вопросам, выданным преподавателем
- 6) Предоставить отчётный материал преподавателю по согласованию с ведущим преподавателем
- 7) Подготовиться к предусмотренному контрольно-оценочному мероприятию по результатам самостоятельного изучения темы
- 8) Принять участие в указанном мероприятии, пройти рубежное тестирование по разделу на аудиторном занятии и заключительное тестирование в установленное для внеаудиторной работы время

ШКАЛА И КРИТЕРИИ ОЦЕНКИ самостоятельного изучения темы

- оценка «зачтено» выставляется, если обучающийся оформил отчетный материал в виде конспеккта на основе самостоятельного изученного материала, смог всесторонне раскрыть теоретическое содержание темы.
- оценка «*не зачтено*» выставляется, если обучающийся неаккуратно оформил отчетный материал в виде конспекта на основе самостоятельного изученного материала, не смог всесторонне раскрыть теоретическое содержание темы.

ВОПРОСЫ для самоподготовки к лабораторным занятиям

Лабораторное занятие 1. СТРОЕНИЕ АТОМА

Краткое содержание

Атомно-молекулярное учение. Современные представления о строении атомов. Основные положения и понятия квантовой теории. Корпускулярно-волновой дуализм элементарных частиц. Квантово-механическая модель атома водорода. Квантовые числа. s-, p-, d-, f — элементы. Электронные конфигурации атомов. Принцип минимальной энергии. Принцип Паули. Правило Хунда. Правила Клечковского.

Свойства атомов. Атомный радиус. Потенциал ионизации. Сродство к электрону. Электроотрицательность. Природа химической связи. Перераспределение электронов при образовании связи.

Вопросы для самоконтроля по теме:

- 1. Основные экспериментальные данные, доказывающие современное представление о теории строения атома.
- 2. Квантовая характеристика излучения и поглощения энергии. Уравнение Планка.
- 3. Строение электронной оболочки атома по Бору.

- 4. Ядро атома и его состав. Изотопы. Изобары.
- 5. Принцип неопределённости Гейзенберга.
- 6. В чём сущность квантовых чисел n, l, m₁ и s?
- 7. Принцип несовместимости Паули.
- 8. Максимальная ёмкость электронов на уровне и подуровне.
- 9. Принцип наименьшей энергии. Правило Клечковского.
- 10. Правило Гунда (Хунда).
- 11. По какому принципу делят элементы на s-, p-, d-, f- семейства?

Лабораторное занятие 2. ХИМИЧЕСКАЯ СВЯЗЬ. ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА.

Краткое содержание

Ковалентная связь. Метод валентных связей. Гибридизация атомных орбиталей. Кратность связи. Типы связей. Энергия ковалентной связи. Насыщенность связи. Направленность. Взаимодействие электронных орбиталей. Полярность и поляризуемость связи. Донорно-акцепторная связь.

Ионная связь. Энергия и свойства связи. Металлическая связь. Энергия и свойства связи. Межмолекулярные взаимодействия. Водородная связь.

Закон Д.И. Менделеева и его современная формулировка. Природа периодичности в изменении свойств элементов.

Периодическая система элементов, её структура. Изменение строения и свойств элементов в периоде, группе. Потенциал ионизации. Сродство к электрону. Электроотрицательность.

Периодический характер изменения свойств соединений.

Вопросы для самоконтроля по теме:

- 1. Основные положения теорий ковалентной химической связи и молекулярных орбиталей.
- 2. Какие связи называются полярными, неполярными?
- 3. В чём суть донорно-акцепторного механизма образования ковалентной связи?
- 4. Ионная связь. Её отличия от ковалентной.
- 5. Особенности водородной связи. Роль водородной связи в биополимерах (белки, крахмал).
- 6. Какая связь называется металлической? Её особенности.
- 7. Структура периодической системы Менделеева (периоды, ряды, группы, подгруппы).
- 8. Закономерности изменения свойств элементов в зависимости от положения в ПСХЭ.
- 9. Как по электронной формуле элемента определить, к какому семейству, к какой группе и подгруппе он принадлежит?

Лабораторное занятие 3-4. ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. СПОСОБЫ ПОЛУЧЕНИЯ, ХИМИЧЕСКИЕ СВОЙСТВА

Краткое содержание

- 1. Оксиды. Определение, номенклатура, способы получения, химические свойства.
- 2. Основания. Определение, номенклатура, способы получения, химические свойства.
- 3. Кислоты. Определение, номенклатура, способы получения, химические свойства.
- 4. Соли. Определение, номенклатура, способы получения, химические свойства.
- 5. Взаимосвязь между классами неорганических соединений.

Лабораторное занятие 5. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ.

Краткое содержание

Комплексы, теория и правило Вернера. Природа связи в комплексных соединениях. Способность атомов различных элементов к комплексообразованию. Классификация и номенклатура комплексов.

Структура комплексных соединений (методы BC, MO, теория кристаллического поля). Изомерия. Взаимовлияние в комплексных соединениях. Устойчивость комплексов. Внутрикомплексные соединения. Хелаты. Комплексы в биологических системах, их роль.

Вопросы для самоконтроля по теме:

- 1. Каковы основные положения теории Вернера?
- 2. Атомы каких элементов способны к комплексообразованию?
- 3. Каково строение комплексных соединений?
- 4. По каким критериям классифицируются комплексные соединения?
- 5. Какие виды химических связей имеются в молекулах комплексов?
- 6. Что такое лиганды, комплексообразователь, координационное число?
- 7. Какое строение имеет внешняя и внутренняя сфера комплексного соединения?
- 8. Во всех ли комплексах имеется внешняя сфера?
- 9. Какие типы химических реакций характерны для комплексных соединений?
- 10. В состав каких природных комплексов входит железо?
- 11. В чем заключается физиологическая функция гемоглобина?
- 12. В каких областях науки и техники применяются комплексные соединения?

Лабораторное занятие 6. ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ. РАСЧЕТЫ ПО ТЕРМОДИНАМИЧЕСКИМ УРАВНЕНИЯМ.

Краткое содержание

Основные понятия химической термодинамики. Функция состояния. Внутренняя энергия. Первое начало термодинамики и его следствия. Энтальпия. Закон Гесса. Тепловые эффекты реакций. Термохимические уравнения.

Энтропия. Микро- и макросостояния вещества. Изменение энтропии и самопроизвольное протекание процессов. Второе и третье начало термодинамики.

Свободные энергии Гиббса и Гельмгольца. Критерий самопроизвольного протекания процесса. Энтальпийный и энтропийный факторы. Термодинамическая устойчивость химических соединений. Физико-химические предпосылки переноса вещества и энергии.

Вопросы для самоконтроля по теме:

- 1. Математическая формулировка первого начала термодинамики.
- 2. Дайте определения понятий «энтальпия», «энтропия» и «изобарно-изотермический потенциал». В каком соотношении находятся эти величины?
- 3. Каковы термодинамические условия для наступления равновесного состояния системы?
- 4. Закон Гесса и следствия из него.
- 5. Как рассчитать теплотворную способность твёрдого и газообразного топлива?

Лабораторное занятие 7-8. ХИМИЧЕСКАЯ КИНЕТИКА. ХИМИЧЕСКОЕ РАВНОВЕСИЕ.

Краткое содержание

Скорость химической реакции. Закон действующих масс (кинетический). Константа скорости реакции. Влияние температуры на скорость реакции. Правило Вант-Гоффа. Энергия активации и путь реакции. Уравнение Аррениуса.

Каталитические реакции и катализаторы. Гомогенный и гетерогенный катализ. Ферментативный катализ. Механизм катализа.

Условие равновесия. Закон действующих масс (термодинамический). Свободная энергия Гиббса и константа равновесия. Свойства химического равновесия.Влияние различных факторов на равновесие. Принцип Ле Шателье.

Вопросы для самоконтроля по теме:

- 1. Какие факторы влияют на скорость химической реакции? Сформулируйте закон действия масс.
- 2. Что характеризует константа скорости химической реакции, константа равновесия?
- 3. Как практически довести обратимую реакцию до конца?
- 4. Приведите формулу, по которой можно вычислить температуру наступления равновесия по термодинамическим данным.

Лабораторное занятие 9.

СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИИ РАСТВОРОВ. ПРИГОТОВЛЕНИЕ РАЗБАВЛЕННЫХ РАСТВОРОВ ИЗ СУХИХ СОЛЕЙ И КОНЦЕНТРИРОВАННЫХ РАСТВОРОВ

Краткое содержание

Растворы. Концентрация растворов и способы её выражения. Растворимость. Механизм образования растворов. Сольваты. Гидраты. Тепловой эффект растворения. Растворение твёрдых веществ и газов.

Коллигативные свойства растворов. Закон Генри. Первый закон Рауля. Температуры кипения и кристаллизации растворов. Второй закон Рауля. Эбулиоскопия. Криоскопия.

Диффузия и осмос. Осмотическое давление растворов. Уравнение Вант-Гоффа. Биологическое значение осмотического давления.

Вопросы для самоконтроля по теме:

- 1. Приведите характеристику наиболее употребимых в химической практике способов выражения концентрации растворов: массовой доли, молярной, нормальной, моляльной.
- 2. Что называется осмотическим давлением?
- 3. Почему растворы кипят при более высокой и замерзают при более низкой температуре, чем чистые растворители?
- 4. Что называется криоскопической и эбулиоскопической константами растворителя?

Лабораторное занятие 10. ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ. ОБМЕННЫЕ РЕАКЦИИ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ

Краткое содержание

Теория электролитической диссоциации Аррениуса. Свойства растворов электролитов. Сильные электролиты. Активность. Ионная сила раствора.

Слабые электролиты. Степень и константа диссоциации, влияние на них различных факторов. Закон разбавления Оствальда.

Вопросы для самоконтроля по теме:

- 1. Что такое электролитическая диссоциация? Какова роль растворителя в этом процессе?
- 2. Что называется электролитом? Чем отличаются сильные электролиты от слабых?
- 3. Что называется степенью электролитической диссоциации? Как зависит степень диссоциации от концентрации раствора? Как она связана с константой диссоциации?
- 4. Какие гидроксиды называют амфотерными?
- 5. Что такое константа диссоциации? Каков взаимосвязь между степенью и константой диссоциации?

Лабораторное занятие 11. pH PACTBOPOB

Краткое содержание

Диссоциация воды. Ионное произведение воды. Водородный показатель. Оценка рН с помощью индикаторов. Способы вычисления рН в растворах кислот и оснований. Роль концентрации водородных ионов в биологических процессах. Произведение растворимости. Понятия о буферных растворах.

Вопросы для самоконтроля по разделу:

- 1. Что такое рН? Какими величинами рН характеризуются кислая, щелочная и нейтральная среды?
- 2. По какой формуле можно вычислить [H+], зная [OH-]?
- 3. По какой формуле можно вычислить рОН, зная рН?
- 4. По какой формуле можно вычислить [H+]:
 - а) в растворе сильной кислоты;
 - б) в растворе слабой кислоты, если известна α ;
 - в) в растворе слабой кислоты, если известна К?
- 5. По какой формуле можно вычислить [ОН-]:
 - а) в растворе сильного основания;
 - б) в растворе слабого основания, если известна α ;
 - в) в растворе слабого основания, если известна К?

Лабораторное занятие 12. ГИДРОЛИЗ СОЛЕЙ

Краткое содержание

Гидролиз солей. Различные случаи гидролиза. Степень и константа гидролиза, их связь, влияние на них различных факторов. Смещение гидролитического равновесия. Вычисление рН растворов солей.

Вопросы для самоконтроля:

- 1. Что называется гидролизом солей?
- 2. Какие соли подвергаются гидролизу?
- 3. В каких случаях в результате гидролиза получаются кислые и основные соли?
- 4. Что называется степенью гидролиза?
- 5. Какие факторы влияют на гидролиз солей?
- 6. Как влияет на гидролиз концентрация солей?
- 7. В каком направлении смещается равновесие гидролиза солей при нагревании?
- 8. Что называется константой гидролиза?
- 9. Как можно усилить или уменьшить процесс гидролиза?

Лабораторное занятие 13. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

Краткое содержание

Электронная теория окислительно-восстановительных реакций. Важнейшие окислители и восстановители, их положение в периодической системе. Окислительно-восстановительное равновесие. Сопряжённые редокс-системы.

Стандартный окислительно-восстановительный (электродный) потенциал. Уравнение Нернста. Электродвижущая сила и направление протекания окислительно-восстановительной реакции. Гальванический элемент. Ряд напряжений металлов.

Влияние среды и внешних условий на направление окислительно-восстановительной реакции и характер продуктов.

Вопросы для самоконтроля по теме:

- 1. Какие химические реакции относятся к окислительно-восстановительным?
- 2. Окислители (акцепторы электронов) и восстановители (доноры электронов).
- 3. Окислительные и восстановительные свойства простых веществ и химических соединений, влияние степени окисления электроноактивных частиц.
- 4. Классификация редокс-реакций.
- 5. Составление химических окислительно-восстановительных уравнений на основе баланса электронов.

Лабораторное занятие 14. КАЧЕСТВЕННЫЙ АНАЛИЗ КАТИОНОВ И АНИОНОВ.

Краткое содержание

Аналитическая классификация катионов по группам: сероводородная (сульфидная), аммиачно-фосфатная, кислотно-основная. Ограниченность любой классификации катионов по группам.

Кислотно-основная классификация катионов по группам. Аналитические реакции катионов различных аналитических групп.

Качественный анализ анионов. Аналитическая классификация анионов по группам (по способности к образованию малорастворимых соединений, по окислительно-восстановительным свойствам). Ограниченность любой классификации анионов по группам. Аналитические реакции анионов различных аналитических групп. Качественный химический анализ вещества.

Вопросы для самоконтроля по теме:

- 1. Какие реакции относятся к аналитическим?
- 2. Что такое предел обнаружения?
- 3. Какие реакции называются специфическими?
- 4. По каким признакам катионы и анионы делят на аналитические группы?
- 5. В каких случаях проводят систематический анализ, а в каких дробный анализ?
- 6. Зачем перед проведением систематического анализа прибегают к процедуре предварительных испытаний?

- 7. По каким принципам объединяют вещества в аналитические группы?
- 8. Групповые реагенты и группы катионов в кислотно-основном методе анализа.

Лабораторное занятие 15-16. МЕТОД НЕЙТРАЛИЗАЦИИ. СТАНДАРТИЗАЦИЯ РАСТВОРА КИСЛОТЫ. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ЩЁЛОЧИ В РАСТВОРЕ.

Краткое содержание

Сущность метода нейтрализации. Основные реакции и титранты метода. Типы кислотноосновного титрования (ацидиметрия, алкалиметрия). Определение точки эквивалентности. Понятие о кривых титрования. Индикаторы, применяемые в методе кислотно-основного титрования, их выбор. Область перехода индикаторов. Показатель титрования индикаторов. Количественные расчеты.

Вопросы для самоконтроля по теме:

- 1. В чём сущность метода нейтрализации, его применение.
- 2. Индикаторы кислотно-основного титрования, теория их действия.
- 3. Что такое интервал перехода индикатора и показатель титрования индикатора.
- 4. Влияние различных факторов на показания индикатора, пути их исключения.
- 5. Порядок титрования. Применение «свидетеля». Смешанные индикаторы.
- 6. Выбор индикатора по кривым титрования. Индикаторная ошибка титрования.

Лабораторное занятие 17. МЕТОД ПЕРМАНГАНАТОМЕТРИИ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА ЖЕЛЕЗА В РАСТВОРЕ.

Краткое содержание

Общая характеристика методов окислительно-восстановительного титрования. Особенности окислительно-восстановительных реакций. Определение эквивалентной массы окислителя и восстановителя. Стандартные окислительно-восстановительные потенциалы пар, их определение и значение. Факторы, влияющие на величину окислительно-восстановительного потенциала пары. Индикаторы, применяемые в методе окислительно-восстановительного титрования. Приготовление стандартного раствора исходного вещества. Приготовление стандартизированного раствора перманганата калия. Хранение раствора. Перманганатометрическое определение железа (II).

Вопросы для самоконтроля по теме:

- 1. Как определяется направление течения окислительно-восстановительной реакции?
- 2. Общая характеристика метода перманганатометрии. Применение.
- 3. Почему в методе перманганатометрии не применяют индиатор?
- 4. Вычисление эквивалентной массы KMnO₄ как окислителя в кислой, нейтральной и щелочной среде.

Лабораторное занятие 18. КОМПЛЕКСОНОМЕТРИЯ. ОПРЕДЕЛЕНИЕ ЖЁСТКОСТИ ВОДЫ.

Краткое содержание

Комплексонометрическое титрование. Понятие о комплексонатах металлов. Равновесия в водных растворах ЭДТА. Состав И устойчивость комплексонатов металлов. Сущность комплексонометрического титрования. Индикаторы комплексонометрии (металлохромные индикаторы), принцип их действия; требования, предъявляемые к металлохромным индикаторам; интервал изменения окраски индикаторов; примеры металлохромных индикаторов (эриохром чёрный Т, ксиленоловый оранжевый, мурексид и др.). Выбор металлохромных индикаторов. Титрант метода, его приготовление, обратное. стандартизация. Виды (приёмы) комплексонометрического титрования (прямое, заместительное). Количественные расчеты.

Вопросы для самоконтроля по теме:

- 1. Какие соли обуславливают жёсткость природной воды?
- 2. Какую жёсткость называют временной, постоянной?
- 3. Способы умягчения воды.
- 4. Сущность метода комплексонометрии.
- 5. Индикаторы комплексонометрии.
- 6. Расчёты в титриметрическом анализе.

Процедура оценивания Шкала и критерии оценивания самоподготовки по темам лабораторных занятий

- оценка «*зачтено*» выставляется, если студент изучил тему лабораторного занятия, ориентируясь на вопросы для самоподготовки, оформил отчетный материал в виде отчёта о лабораторной работе, смог выполнить необходимые расчёты и сделать выводы.
- оценка «*не зачтено*» выставляется, если студент неаккуратно оформил отчетный материал в виде отчёта о лабораторной работе, не смог выполнить необходимые расчёты и сделать выводы.

ТЕСТОВЫЕ ВОПРОСЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ

	Формула высшего оксида элемента, электронная конфигурация атома которого
1s ² 2	$s^2 2p^6 3s^2 3p^6 4s^1 3d^5$ имеет вид
9_2O_2	5
ЭO ₃	
9_2C	93
9_2O	

2. Электроны подуровней характеризуются орбитальным квантовым числом УКАЖИТЕ СООТВЕТСТВИЕ ДЛЯ КАЖДОГО ЭЛЕМЕНТА ЗАДАНИЯ

S	0
р	1
d	2
f	3
	4

```
3. Иону \mathrm{Sc}^{3+} соответствует электронная конфигурация ..... 1s^22s^22p^63s^23p^64s^23d^{10} 1s^22s^22p^63s^23p^6 1s^22s^22p^63s^23p^64s^24p^3 1s^22s^22p^63s^23p^64s^23d^3
```

4. Элемент проявляет в соединениях максимальную степень окисления +5. Конфигурация валентных электронов этого элемента в основном состоянии.....

```
3s<sup>2</sup>3d<sup>3</sup>
4s<sup>2</sup>3d<sup>1</sup>4f<sup>2</sup>
2s<sup>2</sup>2p<sup>5</sup>
2s<sup>2</sup>2p<sup>3</sup>
```

5. Число протонов и нейтронов в ядре изотопа ₃₈Sr⁸⁴ равно

```
p = 38, n = 46

p = 38, n = 49

p = 84, n = 46

p = 87, n = 49
```

6. Формула водородного соединения элемента с электронной конфигурацией атома $1s^22s^22p^63s^23p^63d^04s^24p^64d^{0}5s^25p^5....$

ЭН₅ ЭН₁ ЭН ЭН₂

7. Соотношение $\Delta H = T\Delta S$ свидетельствует ...

о смещении химического равновесия в сторону реагентов о смещении химического равновесия в сторону продуктов

об отрицательном значении энергии Гиббса реакции

о факте наступления состояния химического равновесия

о положительном значении энергии Гиббса реакции

- Если для реакции 2КСІО₃(тв) → 2КСІ(тв)+ $3O_2(\Gamma)$, $\Delta_r H^0 = -90$ кДж, то при разложении 98 г хлората калия выделится кДж теплоты. ОТВЕТ ЗАПИШИТЕ ЦЕЛЫМ ЧИСЛОМ
- 9. Дано термохимическое уравнение: $2Mg+O_2 = 2MgO + 1204$ кДж. Если в результате реакции выделилось 903 кДж теплоты, то масса сгоревшего магния равна г. ОТВЕТ ЗАПИШИТЕ ЦЕЛЫМ ЧИСЛОМ
- Эндотермическими являются процессы... ВЫБЕРИТЕ НЕ МЕНЕЕ ДВУХ ВАРИАНТОВ ОТВЕТОВ сублимации конденсации

плавления

Для расчета теплового эффекта химической реакции используют...

Правило Вант-Гоффа

Закон Генри

Правило Гиббса

Закон Гесса

Для расчета изменения энтальпии процесса $Al_2O_3 + 3SO_3 = Al_2(SO_4)_3$; $\Delta H_{x.p.}$ - ?, можно

```
воспользоваться уравнением... 
 \Delta H \, x.p. = \Delta H^{obp.} \, Al_2(SO_4)_3 + \Delta H^{obp.} \, Al_2O_3 - 3 \, \Delta H^{obp.} \, SO_3 
 \Delta H \, x.p. = \Delta H^{obp.} \, Al_2O_3 - 3 \, \Delta H^{obp.} \, SO_3 - \Delta H^{obp.} \, Al_2(SO_4)_3 
 \Delta H \, x.p. = \Delta H^{obp.} \, Al_2(SO_4)_3 - \Delta H^{obp.} \, Al_2O_3 - 3 \, \Delta H^{obp.} \, SO_3 
 \Delta H \, x.p. = \Delta H^{obp.} \, Al_2(SO_4)_3 - \Delta H^{obp.} \, Al_2O_3 - \Delta H^{obp.} \, SO_3
```

$$\Delta H x.p = \Delta H^{oop.} Al_2 O_3 - 3 \Delta H^{oop.} SO_3 - \Delta H^{oop.} Al_2 (SO_4)_3$$

$$\Delta H x.p = \Delta H^{obp.} Al_2(SO_4)_3 - \Delta H^{obp.} Al_2O_3 - 3\Delta H^{obp.} SO_3$$

13. Установите соответствие (цифра - буква):

	/·
РЕАКЦИЯ ЯВЛЯЕТСЯ	ЕСЛИ ОНА ПРОТЕКАЕТ
1) экзотермической	Г) с выделением теплоты
2) эндотермической	А) с поглощением теплоты
3) гомогенной	Е) в однородной среде
4) гетерогенной	В) в неоднородной среде
	Б) в прямом направлении
	Д) более, чем на 80%

- При уменьшении общего давления в 2 раза скорость элементарной газовой реакции 2NO + Br₂ = 2NOBr уменьшится в _____ раз(а). ОТВЕТ ЗАПИШИТЕ ЦЕЛЫМ ЧИСЛОМ
- Математическое выражение для скорости химической реакции, идущей в одну стадию по схеме $A(\tau) + 2B(\Gamma) \rightarrow C(\Gamma)$, описывается уравнением...

v = k[A][2B]

 $V = k[A][B]^2$

 $V = k[B]^2$

 $v = k[A][2B]^2$

16. Если для некоторой реакции $G^0 > 0$, то верным утверждением является

в системе преобладают продукты реакции

ход реакции предсказать невозможно

в системе преобладают исходные вещества

На скорость химической реакции не оказывает влияние ...

концентрация вещества

условия хранения реактивов

площадь поверхности твердого вещества

температура проведения реакции

Скорость элементарной реакции $3A_{(r)} + B_{(r)} = A_3B_{(r)}$, при увеличении концентрации вещества A в 2 раза и уменьшении концентрации вещества В в 2 раза...

возрастает в 8 раз

не изменяется

уменьшается в 2 раза

возрастает в 4 раза

- 19. При увеличении общего давления в 3 раза скорость элементарной газовой реакции 2NO + O_2 = $2NO_2$ увеличится в раз(а). ОТВЕТ ЗАПИШИТЕ ЦЕЛЫМ ЧИСЛОМ
- 20. Для системы, находящейся при постоянных давлении и температуре, условием состояния равновесия является

 $\Delta G_r < 0$

 $\Delta H_r = 0$

 $\Delta H_r < 0$

 $\Delta G_r = 0$

21. Внешними воздействиями на систему $N_2(\Gamma)$ + $3H_2(\Gamma)$ = $2NH_3(\Gamma)$, $\Delta_r H$ < 0, которые приведут к увеличению равновесной концентрации аммиака, являются...

ВЫБЕРИТЕ НЕ МЕНЕЕ ДВУХ ВАРИАНТОВ ОТВЕТОВ

введение катализатора

уменьшение температуры

увеличение температуры

увеличение давления

22. Увеличение скорости реакции при использовании катализатора происходит в результате ... увеличения концентрации реагирующих веществ

увеличения энергии активации

уменьшения энергии активации

увеличения теплового эффекта

23. В уравнение константы равновесия для гомогенной системы входят _____ концентрации продуктов и исходных веществ

Исходные

Произвольные

Текущие

Равновесные

24. Уравнения реакций, в которых изменение давления не вызовет смещения равновесия, имеют вид...

ВЫБЕРИТЕ НЕ МЕНЕЕ ДВУХ ВАРИАНТОВ ОТВЕТОВ

$$\begin{array}{l} H_{2(r)} + I_{2(r)} \leftrightarrow 2 \ HI_{(r)} \\ Fe_2O_{3(\tau B)} + 3CO_{(r)} = 2Fe_{(\tau B)} + 3CO_{2(r)} \\ MgCO_{3(\tau B)} = MgO_{(\tau B)} + CO_{2(r)} \\ 2SO_{2(r)} + O_{2(r)} = 2SO_3(r) \end{array}$$

- 25. Выражение ω (CaCl₂)= 5% означает...
- 5 г CaCl₂ растворено в 95 г H₂O
- 5 г CaCl₂ растворено в 100 г H₂O
- 5 г CaCl₂ растворено в 1 л H₂O
- 5 моль CaCl₂ растворено в 100 г H₂O
- 26. Укажите истинный раствор

вода + глина

вода + масло

мел + вода

вода + поваренная соль

27. Масса воды, в которой надо растворить 50 г хлорида калия для получения 10%-ного раствора, равна г.

ОТВЕТ ЗАПИШИТЕ ЦЕЛЫМ ЧИСЛОМ

28. В 500 мл раствора с молярной концентрацией сульфата магния 0,2 моль/л содержится грамма(ов) соли.

ОТВЕТ ЗАПИШИТЕ ЦЕЛЫМ ЧИСЛОМ

12

29. Массовая доля уксусной кислоты в растворе, полученном при смешении 300 г раствора с массовой долей уксусной кислоты 20% и 600 г раствора с массовой долей 15%, равна%

8.45

20,5

16,7

33,4

30. 2,8 г гидроксида калия содержатся в мл раствора с молярной концентрацией равной 0,1

ОТВЕТ ЗАПИШИТЕ ЦЕЛЫМ ЧИСЛОМ

- 31. Наименьшей частицей растворённого вещества в растворах электролитов является ... ОТВЕТ ЗАПИШИТЕ СТРОЧНЫМИ БУКВАМИ В ФОРМЕ СУЩЕСТВИТЕЛЬНОГО В ИМЕНИТЕНОМ ПАДЕЖЕ
- 32. Ортофосфорная кислота диссоциирует ступенчато, при этом константы диссоциации по каждой ступени связаны соотношением:

 $K_1 > K_2 < K_3$

 $K_1 < K_2 > K_3$

 $K_1 < K_2 < K_3$ $K_1 > K_2 > K_3$

33. Для уравнения реакции $CuSO_4 + KOH = ...$ сокращенное ионное уравнение имеет вид... $Cu_2^{2+} + 2OH = Cu(OH)_2$

 $Cu^{2+} + SO_4^{2-} + 2K^+ + 2OH^- = Cu(OH)_2 + K_2SO_4$ $2K^+ + SO_4^{2-} = K_2SO_4$

 $CuSO_4 + 2OH^{-} = Cu(OH)_2 + SO_4^{-2}$

34. Установите соответствие между реагентами и ионно-молекулярным уравнением реакции.

РЕАГЕНТЫ	ИОННО-МОЛЕКУЛЯРНОЕ УРАВНЕНИЕ
NaOH + HNO ₃	$OH^{-} + H^{+} = H_{2}O$
Na ₂ CO ₃ + HCI	$CO_3^{2-} + 2H^+ = CO_2 + H_2O$
	$CO_3^{2-} + H_2O = HCO_3^{-} + OH^{-}$
	$Na^+ + OH^- = NaOH$

35. Сумма коэффициентов в полном ионном уравнении реакции между гидроксидом алюминия и соляной кислотой равна....

ОТВЕТ ЗАПИШИТЕ ЦЕЛЫМ ЧИСЛОМ

- 36. Коэффициент молекулой восстановителя перед уравнении реакции $KMnO_4 + Na_2SO_3 + H_2SO_4 \rightarrow MnSO_4 + Na_2SO_4 + K_2SO_4 + H_2O$ равен ... ОТВЕТ ЗАПИШИТЕ ЦЕЛЫМ ЧИСЛОМ
- 37. Сульфит натрия может проявлять в окислительно-восстановительных реакциях свойства только окислителя

ни окислителя, ни восстановителя

только восстановителя

и окислителя, и восстановителя

38. Перманганат калия в окислительно-восстановительных реакциях восстанавливается до ... СООТВЕТСТВИЕ ДЛЯ КАЖДОГО ЭЛЕМЕНТА ЗАДАНИЯ

В кислой среде	катиона Mn ²⁺
В щелочной среде	манганат-иона MnO ₄ ²⁻
В нейтральной среде	MnO ₂
	MnO

39. Вещество НСІ

может быть только окислителем

может быть и окислителем, и восстановителем

может быть только восстановителем

не вступает в окислительно-восстановительные реакции

- 40. Окислительная активность уменьшается в ряду. УКАЖИТЕ ПОРЯДКОВЫЙ НОМЕР ДЛЯ ВСЕХ ВАРИАНТОВ ОТВЕТОВ
- 1. F₂
- 2. Cl₂
- 3. Br₂
- 4. l₂
- 41. Только окислительные свойства проявляет

сульфид натрия

серная кислота

сера

сульфит калия

42. AgNO $_3$ является групповым реагентом для всех анионов в группе... Γ , S^2 -; $C\Gamma$, Br- CO_3^{2-} , $B_4O_7^{2-}$, PO_4^{3-} , AsO_4^{3-} NO_2 , NO_3 , CH_3COO - SO_3^{2-} , $S_2O_3^{2-}$, $C_2O_4^{2-}$

43. В основе разделения катионов методом осаждения лежит различная растворимость

хлоридов, сульфатов, гидроксидов

нитратов, ацетатов и гидроксидов

сульфатов, нитратов и ацетатов

хлоридов, нитратов и карбонатов

44. Групповым реагентом на ионы кальция, стронция и бария является раствор ...

серной кислоты

гидроксида натрия

азотной кислоты

сероводорода

45. Для селективного обнаружения ионов железа (III) в растворе используется раствор...

Желтой кровяной соли $K_4[Fe(CN)_6]$

Медного купороса

Соли Мора

Магнезиальной смеси

46. Доказать присутствие CO_3^{-2} можно с помощью

сильной кислоты

шёлочи

сероводорода

перманганата калия

47. Ионы калия окрашивают пламя в ... цвет

красный

жёлтый

фиолетовый

зелёный

48. Специфические реагенты для открытия ионов

УКАЖИТЕ СООТВЕТСТВИЕ ДЛЯ КАЖДОГО ЭЛЕМЕНТА ЗАДАНИЯ

THE THE COURSE AND THE THE CONTENT OF THE THE THE				
Fe ²⁺	$K_3[Fe(CN)_6]$			
Pb ²⁺	KI			
Al ³⁺	Ализарин			
Ba ²⁺	H ₂ SO ₄			
	HCI			

- 49. При добавлении йодоводородной кислоты к нитрату свинца появляется осадок ... цвета ОТВЕТ ЗАПИШИТЕ СТРОЧНЫМИ БУКВАМИ В ФОРМЕ ПРИЛАГАТЕЛЬНОГО В РОДИТЕЛЬНОМ ПАДЕЖЕ
- 50. Реактив для открытия ионов железа Fe²⁺

KCNS $K_4[Fe(CN)_6]$ K_2SO_4 $K_3[Fe(CN)_6]$

51. AgNO $_3$ является групповым реагентом для анионов ... ВЫБЕРИТЕ НЕ МЕНЕЕ ДВУХ ВАРИАНТОВ ОТВЕТОВ

I⁻, S²⁻ CI⁻, Br⁻ SO₄²⁻, CrO₄²⁻ NO₃, NO₂

52. Гравиметрическая форма – это форма, в виде которой определяемое вещество взвешивают осаждают осаждают, а затем взвешивают

промывают и затем фильтруют

53. Метод анализа, основанный на точном измерении массы определяемого вещества или его составных частей, выделяемых в виде соединений постоянного состава, называется...

гравиметрическим

объемным

титриметрическим

комплексонометрическим

54. При анализе сплава навески 1,3162 г получено 0,1234 г оксида алюминия Al_2O_3 . Массовая доля алюминия в сплаве _____% ОТВЕТ ВВЕДИТЕ ЦИФРОЙ С ТОЧНОСТЬЮ ДО ДЕСЯТЫХ

55. При гравиметрическом определении железа(III) 2Fe $^{3+}$ + 6 OH $^{-}$ \rightarrow 2Fe(OH) $_{3}$ УКАЖИТЕ СООТВЕТСТВИЕ ДЛЯ КАЖДОГО ЭЛЕМЕНТА ЗАДАНИЯ

COURSE DISTRIBUTED CONTINUE OF THE WAY				
1. Форма осаждения	Fe(OH) ₃			
2. Гравиметрическая форма	Fe ₂ O ₃			
	FeO			
	Fe(OH) ₂			

56. Для установления титра раствора перманганата калия применяется стандартный раствор щавелевой кислоты тиосульфата натрия серной кислоты сульфата железа (II)

57. В основе методов кислотно-основного титрования лежит процесс образования ... слабого электролита

соли

кислоты

основания

58. Объем раствора КОН с молярной концентрацией эквивалента 0,1моль/л, необходимый для нейтрализации 20 мл раствора азотной кислоты с молярной концентрацией эквивалента 0,15моль/л, равен ____ миллилитрам.

ОТВЕТ ВВЕДИТЕ ЦЕЛЫМ ЧИСЛОМ

59. Метод титрования, при котором к анализируемому веществу А добавляется избыток вещества В, а его непрореагировавший остаток оттитровывают рабочим раствором вещества С, называется...... прямое титрование

косвенное титрование

обратное титрование

oopariioc irripobaniic

титрование заместителя

60. Порядок выполнения качественного и количественного анализа следующий:

очередность выполнения анализов не имеет значения количественный анализ предшествует качественному сначала выполняют качественный анализ, затем количественный качественный и количественный анализы выполняют одновременно

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ ответов на тестовые вопросы

- оценка «отлично» выставляется обучающемуся, если получено более 81-100% правильных ответов.
- оценка «хорошо» получено от 71 до 80% правильных ответов.
- оценка «удовлетворительно» получено от 60 до 70% правильных ответов.
- оценка «неудовлетворительно» получено менее 60% правильных ответов.

3.1.4 Средства для промежуточной аттестации по итогам изучения дисциплины

По итогам изучения дисциплины, обучающиеся проходят заключительное тестирование. Тестирование является формой контроля, направленной на проверку владения терминологическим аппаратом, современными информационными технологиями и конкретными знаниями в области фундаментальных и прикладных дисциплин.

Тестирование осуществляется по всем темам и разделам дисциплины, включая темы, выносимые на самостоятельное изучение.

Процедура тестирования ограничена во времени и предполагает максимальное сосредоточение обучающегося на выполнении теста, содержащего несколько тестовых заданий.

Тестирование проводится в электронной форме. Тест включает в себя 30 вопросов. Время, отводимое на выполнение теста - 45 минут. В каждый вариант теста включаются вопросы разных типов (одиночный и множественный выбор, открытые (ввод ответа с клавиатуры), на упорядочение, соответствие и др.). На тестирование выносятся вопросы из каждого раздела дисциплины.

	вопросы для тестового контроля по итогам изучения дисцип.	лины
1. 1) 17 2) 18	3) 20	
2. 1) Br 2. 2) S ²	2. Электронную конфигурацию, соответствующую атому Ar, имеет ион 3) S^{6+} 4) Mg^{2+}	
	3. Определите сумму главного и побочного (орбитального) квантовых чис	ел для подуровня
4d. 1) 4 2) 5	3) 6 4) 7	
	4. Используя правило Гунда, определите суммарное спиновое число эле вня, если он наполовину заполнен электронами.	ктронов 3р –
1) 1/2 2) 3/2	3) 5/2	
5. энергетич	5. По какой формуле определяется максимальное число электронов да тического уровня?	нного
1) n ² 2) 2l + 1	3) 2n ²	
6. K ₂ [Pt(OH) _t	0H)₅Cl]?	ексном соединении:
1) +1 2) +2	3) +3 4) +4	
7. k	7. Какие ионы являются лигандами в комплексном соединении K₂[Pt(OH)₅C	:[]?

1) OH ⁻ 2) Cl ⁻ , Pt ⁴⁺	3) K ⁺ 4) OH ⁻ , Cl ⁻
8. Среди приведенных укажите правильноем вопросе. 1) хлорид пентагидроксоплатинат(II) калия 2) хлоропентагидроксоплатинат(IV) калия 3) хлорид гидроксоплатины (II) калия 4) хлорид пентагидроплатины(IV) калия	е название соединения, формула которого дана в 1-
9. Зная константы устойчивости комплекснепрочным: K_{ycT} [Ag(NH ₃) ₂] ⁺ = 1,62 · 10 ⁷ ; K_{ycT} [Cd(K_{ycT} [Cu(NH ₃) ₄] ²⁺ = 1,07 · 10 ¹² ;	ых ионов, укажите, который из них является самым $NH_3)_4]^{2^+} = 3,63 \cdot 10^6$; $K_{yct} \left[Co(NH_3)_6 \right]^{2^+} = 2,45 \cdot 10^6$;
1) [Ag(NH ₃) ₂] ⁺ 2) [Cd(NH ₃) ₄] ²⁺	3) [Co(NH ₃) ₆] ²⁺ 4) [Cu(NH ₃) ₄] ²⁺
10. Среди приведенных ниже укажите со $InCl_3$; NH_4Cl ; $K_2[ZnCl_4]$ 1) $Na_2[Hg(NO_2)_4]$ 2) $InCl_3$	единение с комплексным катионом: Na ₂ [Hg(NO ₂) ₄]; 3) NH ₄ Cl 4) K ₂ [ZnCl ₄]
11. Амфотерным и основным оксидами со 1) FeO и SO_2 2) Al_2O_3 и K_2O	ответственно являются: 3) ZnO и NO 4) Fe_2O_3 и CO
12. Гидроксид калия будет взаимодейств 1) NaOH, H_2SO_4 , K_2O 2) $Zn(OH)_2$, $Cu(SO)_4$, HBr	овать с каждым веществом из набора: 3) NO ₂ , Al(OH) ₃ , HCl 4) HNO ₃ , Ba(OH) ₂ , Cl ₂ O ₇
13. Сколько кислотных остатков у фосфо 1) 1 2) 2	оной кислоты? 3) 3 4) 4
14. Как называется соль AlOH(CH₃COO)₂?1) диацетат гидроалюминия2) дигидроацетат алюминия	3) ацетат гидроксоалюминия4) ацетат дигидроксоалюминия
15. Указать тип данной соли $[Ni(OH)]_2 SO_4$ 1) кислая 2) средняя	3) двойная 4) основная
16. Из перечисленных кислотных оксидов 1) SO_3 2) $C1_2O_7$	не реагирует с водой 3) P ₂ O ₅ 4) SiO ₂
17. При нагревании оксида железа (II) с ог 1) Fe 2) FeO	сидом углерода (II) образуются углекислый газ и 3) Fe_2O_3 4) Fe_3O_4
18. Какое вещество надо прибавить к нитр магния? 1) HNO ₃ 2) Mg(OH) ₂	рату гидроксомагния, чтобы превратить его в нитрат 3) MgO 4) NaNO ₃
19. Неверно , что согласно второму начал 1) КПД тепловой машины всегда меньше единиц 2) тепловой эффект обратной реакции больше то	у термодинамики ы (100%) еплового эффекта прямой реакции ут процессы, сопровождающиеся увеличением
20. В каком ряду газообразные галогеново стойкости? 1) HF, HCl, HBr, HI	дороды расположены в порядке возрастания их 3) HCI, HF, HBr, HI

2)	HI, HF, HCI, HBr	4)	HI	, HE	Br, I	HCI,	HF					
1)	21. По термохимическому уравнению 2Силлоты, выделяющейся в результате окисления 38,75 кДж 77,5 кДж	16 г 3)	мед 124		ļж	310	кДж в	зычи	слит	е кол	личес ⁻	гво
1)	22. Чему равна стандартная энтальпия об акции его горения: $2H_2S_{(r)} + 3O_{2(r)} = 2SO_{2(r)} + 2H$ -499 кДж -20 кДж	Ο _(Γ) 3)	; Δ⊦ -40		103			13860	тен	тепл	овой з	эффект
Al ₂ (1) 2) 3) 4)	23. Каким из уравнений можно воспользов $O_3+3SO_3=Al_2(SO_4)_3; \Delta H_{x.p.}-?$ $\Delta H x.p. = \Delta H^{obp.}Al_2(SO_4)_3+\Delta H^{obp.}Al_2O_3-3\Delta H$ $\Delta H x.p. =\Delta H^{obp.}Al_2O_3-3\Delta H^{obp.}SO_3-\Delta H^{obp.}Al_2O_3-\Delta H^{$	^{обр.} S 2(SC ^{обр.} S	SO ₃ D ₄) ₃ SO ₃	ля р	асч	ета і	измен	ения	і ЭНТ	альп	ии про	оцесса
	24. При увеличении общего давления в 2 = 2NO ₂ увеличится в раз(а).	•		ppoc.	ть э	лем	ентар			вой р	еакци	и 2NO +
1)	2 2) 4	3)	6					4)	8			
	25. Если при увеличении температуры от чение температурного коэффициента реакции				скор	ОСТЬ	ь реак			осла	в 9 ра	аз, то
1)	2 2) 3	3)	6					4)	9			
1)	26. Для смещения равновесия в системе разования сероводорода необходимо понизить температуру ввести катализатор	Η ₂₍ Γ) 3) 4)	по	низи	1ТЬ ,	давл	-), ∆Н іение пение		21 κ	Дж в	сторс	ну
 Какой физический смысл константы скорости реакции? величина, характеризующая реакционную способность веществ при данной концентрации; равна скорости реакции, если концентрация каждого из реагирующих веществ равна 1 моль/л; равна скорости реакции, если концентрации реагирующих веществ равны между собой; равна скорости реакции, если произведение концентраций реагирующих веществ равно единице. 												
	28. Изменение давления не влияет на сме $C(\tau)$ + CO_2 (Γ) \leftrightarrow $2CO(\Gamma)$ CO_2 (Γ) + $H_2(\Gamma)$ \leftrightarrow $CO(\Gamma)$ + $H_2O(\Gamma)$	еще		3) (CO(r) + :	в сис ⁻ 2 Н ₂ (г) СІ ₂ (г) ∙) ↔ (CH ₃ C		ı	
	29. Для системы, находящейся при посто вновесия является					иит	емпер				ием с	остояния
1)	$\Delta G_r < 0 \qquad \qquad 2) \Delta H_r < 0$	3)	ΔΗ	_r = 0				4)	ΔG	_r = 0		
1)	30. Какое из приведенных выражений соо акции $Fe_2O_{3(K)} + 3CO_{(\Gamma)} = 2Fe_{(K)} + 3CO_{2(\Gamma)}?$ k· $[Fe_2O_3] \cdot [CO]^3$ k· $[Fe_2O_3] \cdot [CO]$			/ет з [СО] [Fe ₂		-	ейств	ующ	их м	асс г	іомкаг	й
2. 3.	31. Электролиты - это вещества, которые. не растворимы в органических растворителях диссоциируют в растворе или расплаве на иокрастворимы в воде не проводят электрический ток											

32. Для уравнения реакции $CuSO_4 + KOH = ...$ сокращенное ионное уравнение имеет вид... 1. $CuSO_4 + 2OH = Cu(OH)_2 + SO_4^{2^-}$ 2. $Cu^{2^+} + SO_4^{2^-} + 2K^+ + 2OH = Cu(OH)_2 + K_2SO_4$ 3. $2K^+ + SO_4^{2^-} = K_2SO_4$

4. $Cu^{2+} + 2OH = Cu(OH)_2$
33. Бромид бария вступит в реакцию обмена в водном растворе с 1. сульфатом меди (II) 3. гидроксидом лития 2. хлоридом меди (II) 4. азотной кислотой
34. Для соединений NH ₄ OH и NH ₄ NO ₃ верно, что 1. оба — сильные электролиты 2. оба — слабые электролиты 3. только второе — сильный электролит 4. только первое — сильный электролит
35. Укажите правильное выражение К _{ДИС} гидроксида железа (III) по второй ступени:
1. $K_{\text{ZMC2}} = \frac{2[OH^{-}][Fe^{3+}]}{[Fe(OH)_{2}^{+}]};$ 3. $K_{\text{ZMC2}} = \frac{[Fe^{3+}][OH^{-}]^{2}}{[Fe(OH)_{2}^{+}]};$
2. $K_{JJHC2} = \frac{[OH^-]^2 [Fe^{3+}]}{[Fe(OH)_3]}$. 4. $K_{JJHC2} = \frac{[Fe(OH)^{2+}] [OH^-]}{[Fe(OH)_2^+]}$;
36. По какой формуле можно вычислить концентрацию ионов водорода в разбавленног растворе сильного основания?
1) $[H^{+}]=C_{H}$ 2) $[H^{+}]=\sqrt{C_{M}\cdot K}$ 3) $[H^{+}]=\frac{10^{-14}}{C_{M}\cdot \alpha}$ 4) $[H^{+}]=\frac{10^{-14}}{C_{M}\cdot n}$ 5д) $[H^{+}]=\frac{10^{-14}}{\sqrt{C_{M}\cdot K}}$
37. Чему равен водородный показатель 0,0025 M раствора H_2SO_4 ? 1) 11,70 2) 2,30 3) 2,62 4) 11,38 5) 2,90.
38. Чему равна концентрация гидроксид-ионов в растворе, водородный показатель которог
равен 8,20? 1) 6,31·10 ⁻⁹ 2) 1,59·10 ⁻⁶ 3) 1,59·10 ⁻⁸ 4) 6,31·10 ⁻⁵ 5) 6,61·10 ⁻⁸
39. Какая будет реакция среды, если $\lg \frac{[H^+]}{[OH^-]} = 0$?
[<i>OH</i>] 1) Нейтральная. 2) Кислая. 3) Щелочная. 4) Выражение не дает информации о характере среды.
40. Как изменится pH 0,004 н. раствора щелочи, если его разбавили в 100 раз водой? 1) Не изменится. 2) Уменьшится в 100 раз. 3) Увеличится на 2. 4) Увеличится в 100 раз. 5) Уменьшится на 2.
41. В реакции $K_2Cr_2O_7 + 3KNO_2 + 4H_2SO_4 = Cr_2(SO_4)_3 + 3KNO_3 + K_2SO_4 + 4H_2O$ окисляется ион
1) SO ₄ ²⁻ 2) Cr ₂ O ₇ ²⁻ 3) NO ₂ 4) K ⁺
42. Общая сумма коэффициентов в левой части уравнения реакции $Cu + H_2SO_4$ (конц) \rightarrow $CuSO_4 + SO_2 + H_2O$ равна
1) 3 2) 4 3) 6 4) 7
43. Коэффициент перед восстановителем в уравнении реакции I_2 + CI_2 + $H_2O \rightarrow HIO_3$ + HCI равен
1) 1 2) 2 3) 3 4) 4
44. Сульфит натрия может проявлять в окислительно-восстановительных реакциях свойства 1) только окислителя 3) ни окислителя, ни восстановителя

2)	только восстановителя	4) и окислителя, и восстановителя	
	45. Восстановительные свойства железо в FeO + H_2SO_4 = $FeSO_4$ + H_2O $2FeCl_2$ + Cl_2 = $2FeCl_3$	роявляет в реакции: 3) Fe(OH) ₂ + 2HCl = FeCl ₂ + 2H ₂ O 4) FeCl ₂ + 2NaOH = Fe(OH) ₂ + 2NaCl	
	46. Как называется метод титрования, при бавляется избыток вещества В, а его непрореа створом вещества С?		
	. прямое титрование; . косвенное титрование;	3). обратное титрование;4). титрование заместителя.	
1)	Качественным реагентом на фосфат-ионы яв красная кровяная соль магнезиальная смесь	пяется 3) реактив Несслера 4) дифениламин	
100	48. Раствор бромоводородной кислоты и 3% диссоциации равна моль/л.	меет pH = 1. Концентрация кислоты в растворе	при
1)	0,01 0,001	3) 0,1 4) 0,5	
	49. Сколько граммов AgCl получится из 1 0,9612 г 1,2816 г.	0000 г х.ч. хлорида калия? 3) = 1,9261 г 4) = 3,8448 г	
1) 2)	50. В методе ацидиметрии в качестве с $HCOOH$ $Na_2B_4O_7$ · $10H_2O$	андартного вещества применяется: 3) NaOH 4) HCI	
1) 2)	51. Титр (г/см 3) 1,0000 моль/дм 3 раство 9,000 · 10 $^{-2}$ 9,000 · 10 $^{-4}$	ра молочной кислоты CH ₃ CH(OH)COOH рав 3) 9,000 · 10 ⁻³ 4) 9,000 · 10 ⁻¹	зен:
1) 2)	52. Присутствие каких солей обуславлива $Ca(HCO_3)_2$, Na_2CO_3 $NaHCO_3$, $KHCO_3$	ет временную жесткость воды? 3) CaCl ₂ , MgCl ₂ 4) Ca(HCO ₃) ₂ , Mg(HCO ₃) ₂	
	53. В фотоколориметрии используется Инфракрасная Видимая	область спектра 3) Ультрафиолетовая 4) Рентгеновская	
1) 2)	54. Ионообменный метод разделения кат $nRH + Me^{n+} = MeH_n + nR^+$ $nRH + A^{n-} = HnA + nR^+$	онов основан на реакции 3) nROH + Me ⁿ⁺ = Me(OH) ₂ + nR ⁺ 4) nRH + Me ⁿ⁺ = RnMe + nH ⁺	
1)	55. Метод разделения и концентрирования ипонентов между двумя несмешивающимися ф экстракцией ректификацией	the state of the s	
	56. В основе метода нефелометрии лежи Длины волны падающего света Интенсивности светорассеивания	•	
,	57. В фотоколориметрии используется _ Инфракрасная Видимая	область спектра 3) Ультрафиолетовая 4) Рентгеновская	
1) 2)	58. Ионообменный метод разделения кат $nRH + Me^{n+} = MeH_n + nR^+$ $nRH + A^{n-} = HnA + nR^+$	онов основан на реакции 3) nROH + Me ⁿ⁺ = Me(OH) ₂ + nR ⁺ 4) nRH + Me ⁿ⁺ = RnMe + nH ⁺	

- 59. Объектом анализа в фотоколориметрии является....
- 1) Эмульсия

3) Окрашенный истинный раствор

2) Суспензия

- 4) Неокрашенный истинный раствор
- 60. Оптическая плотность раствора с концентрацией вещества 1 моль/л при толщине слоя в 1 см называется...
- 1) удельной электрической проводимостью
- 3) удельным сопротивлением
- 2) молярной электрической проводимостью
- 4) молярным коэффициентом светопоглощения

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ ответов на вопросы заключительного тестирования

- оценка «отлично» выставляется обучающемуся, если получено более 81% правильных ответов.
- оценка «хорошо» получено от 71 до 80% правильных ответов.
- оценка «удовлетворительно» получено от 61 до 70% правильных ответов.
- оценка «неудовлетворительно» получено менее 61% правильных ответов.

ПЛАНОВАЯ ПРОЦЕДУРА получения дифференцированного зачета

Промежуточная аттестация по дисциплине в форме дифференцированного зачета осуществляется по результатам текущего контроля успеваемости при выполнении всех видов текущего контроля, предусмотренных рабочей программой учебной дисциплины, и включает обязательное тестирование.

Нормативная база проведения промежуточной аттестации обучающихся по результатам изучения дисциплины:					
1) действующее «Положение о текущем контроле успеваемости, промежуточной аттестации обучающихся по программам высшего образования (бакалавриат, специалитет, магистратура) и среднего профессионального образования в ФГБОУ ВО Омский ГАУ»					
Основные характеристики					
промежуточнои атте	стации обучающихся по итогам изучения дисциплины				
Цель промежуточной аттестации -	установление уровня достижения каждым обучающимся целей обучения по данной дисциплине, изложенных в п.2.2 настоящей программы				
Форма промежуточной аттестации -	Дифференцированный зачёт				
Место процедуры получения зачёта в графике учебного процесса	1) участие обучающегося в процедуре получения дифференцированного зачёта осуществляется за счёт учебного времени (трудоёмкости), отведённого на изучение дисциплины 2) процедура проводится в рамках ВАРС, на последней неделе семестра				
Основные условия получения обучающимся зачёта:	1) обучающийся выполнил все виды учебной работы (включая самостоятельную) и отчитался об их выполнении в сроки, установленные графиком учебного процесса по дисциплине; 2) прошёл заключительное тестирование; 3) подготовил полнокомплектное учебное портфолио.				

4. ОЦЕНОЧНЫЕ СРЕДСТВА сформированности компетенции

- 4.1. **ОПК-4** Способен использовать в профессиональной деятельности методы решения задач с использованием современного оборудования при разработке новых технологий и использовать современную профессиональную методологию для проведения экспериментальных исследований и интерпретации их результатов
- **ИД-1** Находит современное оборудование и использует профессиональную методологию для проведения экспериментальных исследований и интерпретации полученных результатов.

Тип заданий: Выбор одного варианта правильного ответа из нескольких предложенных / выбор нескольких правильных вариантов из предложенных вариантов ответов.

1. Кислую среду имеет водный раствор...

карбоната натрия нитрата калия иодида калия + хлорида алюминия

2. Математическое выражение для скорости химической реакции, идущей в одну стадию по схеме $A(тв) + 2B(r) \rightarrow C(r)$, описывается уравнением:

```
u = k[A][2B]

u = k[A][B]^2

+ u = k[B]^2

u = k[A][2B]^2
```

3. Доказать присутствие карбонат-иона можно с помощью раствора...

щёлочи сероводорода + сильной кислоты перманганата калия

4. Титриметрия основана на точном измерении...

массы анализируемого объекта и стандартного образца + объёмов растворов известной и неизвестной концентрации концентрации анализируемого объекта объёма раствора неизвестной концентрации

5. Свойства веществ зависят не только от состава, но и от ...

условий получения вещества + порядка связи атомов в соединении валентности химических элементов агрегатного состояния вещества

6. Элемент, проявляющий в соединениях максимальную степень окисления +7 описывается электронной конфигурацией валентных электронов ...

```
2s<sup>2</sup>2p<sup>5</sup>
3s<sup>2</sup>2d<sup>5</sup>
+ 4s<sup>2</sup>3d<sup>5</sup>
4s<sup>2</sup>3d<sup>7</sup>
```

7. Перманганат калия в кислой среде восстанавливается до...

```
манганат-иона MnO_4^{2-} + катиона Mn^2 оксида марганца (II) MnO оксида марганца (IV) MnO_2
```

8. Уравнения реакций, в которых изменение давления не вызовет смещения равновесия, имеют вид...

```
УКАЖИТЕ НЕ МЕНЕЕ ДВУХ ВАРИАНТОВ ОТВЕТА MgCO_3(\tau B) = MgO(\tau B) + CO_2(\tau) 2SO_2(\tau) + O_2(\tau) = 2SO_3(\tau) + H_2(\tau) + I_2(\tau) \leftrightarrow 2 HI(\tau) + Fe_2O_3(\tau B) + 3CO(\tau) = 2Fe(\tau B) + 3CO_2(\tau)
```

9. Продолжите предложение: «Чем выше концентрация растворенного вещества в растворе, тем ...»

УКАЖИТЕ НЕ МЕНЕЕ ДВУХ ВАРИАНТОВ ОТВЕТА

ниже температура кипения

- + выше температура кипения
- + ниже температура кристаллизации

выше температура кристаллизации

неоднозначнее изменяется температура кипения и кристаллизации

10. Полному гидролизу подвергаются соли ...

ВЫБЕРИТЕ НЕ МЕНЕЕ ДВУХ ВАРИАНТОВ ОТВЕТОВ

 $Al_2(SO_4)_3$

CrCl₃

- + Cr₂S₃
- + Cs₂CO₃

11. Выражение ω (CaCl₂) = 5% означает, что ...

ВЫБЕРИТЕ НЕ МЕНЕЕ ДВУХ ВАРИАНТОВ ОТВЕТОВ

5 г CaCl₂ растворено в 1 л H₂O

- + 5 г CaCl₂ растворено в 95 г H₂O
- + 5 г CaCl₂ содержится в 100 г раствора

5 моль CaCl₂ содержится в 100 г раствора

12. В водном растворе с выделением газообразного продукта протекает реакция

ВЫБЕРИТЕ НЕ МЕНЕЕ ТРЁХ ВАРИАНТОВ ОТВЕТОВ

хлорид алюминия + гидроксид калия

нитрат натрия + сульфит калия

- + сульфид калия + соляная кислота
- + хлорид аммония + гидроксид натрия

соляная кислота + водный раствор аммиака

сульфат натрия + серная кислота

+ карбонат кальция + азотная кислота

13. Аналитическими сигналами в качественном анализе являются

ВЫБЕРИТЕ НЕ МЕНЕЕ ТРЁХ ВАРИАНТОВ ОТВЕТОВ

- + изменение окраски раствора
- + образование осадка

точка эквивалентности

+ исчезновение окраски раствора

отсутствие изменения окраски индикатора

скачок титрования

Тип заданий: Установление правильной последовательности в предложенных вариантах ответов/ Установление соответствия между элементами в предложенных вариантах ответов

14. Расположите соединения по увеличению степени окисления марганца

УКАЖИТЕ ПОРЯДКОВЫЙ НОМЕР ДЛЯ ВСЕХ ВАРИАНТОВ ОТВЕТОВ

MnCl₂

MnO(OH)

 MnO_2

CaMnO₄ □

KMnO₄ □

15. Установите последовательность этапов анализа

УКАЖИТЕ ПОРЯДКОВЫЙ НОМЕР ДЛЯ ВСЕХ ВАРИАНТОВ ОТВЕТОВ постановка задачи выбор метода (методики) отбор пробы подготовка пробы к анализу измерения расчёты и статистическая обработка интерпретация результатов 16. Установите соответствие между реагирующими веществами и сокращенным ионным **уравнением их взаимодействия:** УКАЖИТЕ СООТВЕТСТВИЕ ДЛЯ КАЖДОГО ЭЛЕМЕНТА ЗАДАНИЯ $Ca + 2H^{+} \rightarrow Ca^{2+} + H_{2}$ Ca + HCl → $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3$ CaCl₂ + Na₂CO₃ → $CaCO_3 + 2H^+ \rightarrow Ca^{2+} + H_2O + CO_2$ CaCO₃ + HNO₃ → Ca(OH)₂ + HCl → $H^{+} + OH^{-} \rightarrow H_{2}O$ $CO_3^{2-} + 2H^{\dagger} \rightarrow H_2O + CO_2$ Ca + 2Cl⁻ → CaCl₂ 17. Установите соответствие между формулой соли и типом гидролиза этой соли: УКАЖИТЕ СООТВЕТСТВИЕ ДЛЯ КАЖДОГО ЭЛЕМЕНТА ЗАДАНИЯ (NH₄)₂CO₃по катиону и по аниону NH₄CI по катиону Na₂CO₃ по аниону NaNO₂ по аниону гидролизу не подвергается Тип заданий: Открытого типа (самостоятельный ввод обучающимся правильного ответа в виде термина, краткого определения, цифрового значения)/ Практико-ориентированные задания (кейс-задания, задачи) При диспепсии и для улучшения пищеварения у новорожденных животных в форме натурального или искусственного желудочного сока применяется кислота. ЗАПИШИТЕ СТРОЧНЫМИ БУКВАМИ В ФОРМЕ ПРИЛАГАТЕЛЬНОГО В СООТВЕТСТВУЮШЕМ ПАДЕЖЕ + соляная, хлороводородная, хлористоводородная Среднесуточная потребность в белках, жирах и углеводах для студента составляет соответственно ≈ 110, 105 и 350 г. Если теплоты сгорания углеводов и белков в организме человека составляют 4,1 ккал/г, жиров -9,3 ккал/г, то суточная энергетическая потребность среднестатистического студента равна _____ ОТВЕТ ЗАПИШИТЕ ЦИФРОЙ (ОКРУГЛЕНИЕ ДО ДЕСЯТЫХ) +2862,5 20. В ветеринарной практике при обезвоживании и интоксикации животных используют 0.9%ный раствор хлорида натрия. Масса соли, введенная в организм животного при вливании 250 мл этого раствора (р = 1 г/мл), равна

ОТВЕТ ЗАПИШИТЕ ЦИФРОЙ (ОКРУГЛЕНИЕ ДО СОТЫХ)

+ 2,25 г