мация о владельце:	
льный програм (Омеский государственный аграрны) 2f5deae4116bbfcbb9ac98e39108931227e81add2U7cbee414912098d7a	жетное образовательное учреждение образования й университет имени П.А.Столыпина» инарной медицины
ОПОП по специальнос ⁻	ти 36.05.01 Ветеринария
МЕТОЛИЧЕСЬ	КИЕ УКАЗАНИЯ
	бной дисциплины
•	ологических систем
Специализация - Be [.]	теринарная медицина µей "Ветеринарный фармацевт"
Обеспечивающая преподавание дисциплины кафедра -	математических и естественнонаучных дисциплин
Разработчик, старший преподаватель	Э.В. Логунова

СОДЕРЖАНИЕ

Введение	3
1. Место учебной дисциплины в подготовке выпускника	4
1.1. Перечень компетенций с указанием этапов их формирования в результате освоения	4
учебной дисциплины	
1.2. Описание показателей, критериев и шкал оценивания и этапов формирования	5
компетенций в рамках дисциплины	
2. Структура учебной работы, содержание и трудоёмкость основных элементов	6
дисциплины	
2.1. Организационная структура, трудоемкость и план изучения дисциплины	6
2.2. Укрупнённая содержательная структура учебной дисциплины и общая схема её	6
реализации в учебном процессе	
3. Общие организационные требования к учебной работе обучающегося	7
3.1. Организация занятий и требования к учебной работе обучающегося	7
3.2. Условия допуска к экзамену	7
4. Лекционные занятия	7
5. Лабораторные занятия по дисциплине и подготовка к ним	8
6. Общие методические рекомендации по изучению отдельных разделов дисциплины	9
7. Общие методические рекомендации по оформлению и выполнению отдельных видов	12
BAPC	
7.1. Организация выполнения и проверка виртуальной лабораторной работы	12
7.1.1. Шкала и критерии оценивания виртуальной лабораторной работы	13
7.2. Рекомендации по самостоятельному изучению тем	13
7.2.1. Шкала и критерии оценивания самостоятельного изучения тем	13
8. Входной и текущий (внутрисеместровый) контроль хода и результатов учебной работы	13
8.1. Входной контроль	13
8.1.1. Шкала и критерии оценивания ответов на вопросы входного контроля	14
8.2. Текущий контроль успеваемости	14
8.2.1. Вопросы для самоподготовки лабораторным занятиям	14
8.2.2. Шкала и критерии оценивания лабораторной работы	16
9. Промежуточная (семестровая) аттестация	17
9.1. Нормативная база проведения промежуточной аттестации по результатам изучения	17
дисциплины	4-
9.2. Основные характеристики промежуточной аттестации обучающихся по итогам	17
изучения дисциплины	4-
9.3. Плановая процедура проведения экзамена	17
9.3.1. Перечень примерных вопросов к экзамену	17
9.3.2. Шкала и критерии оценивания ответов на вопросы экзамена	19
10. Информационное и методическое обеспечение учебного процесса по дисциплине	19

ВВЕДЕНИЕ

- 1. Настоящее издание является основным организационно-методическим документом учебнометодического комплекса по дисциплине в составе основной профессиональной образовательной программы высшего образования (ОПОП ВО). Оно предназначено стать для них методической основой по освоению данной дисциплины.
- 2. Содержательной основой для разработки настоящих методических указаний послужила Рабочая программа дисциплины, утвержденная в установленном порядке.
- 3. Методические аспекты развиты в учебно-методической литературе и других разработках, входящих в состав УМК по данной дисциплине.
- 4. Доступ обучающихся к электронной версии Методических указаний по изучению дисциплины, обеспечен в электронной информационно-образовательной среде университета. При этом в электронную версию могут быть внесены текущие изменения и дополнения, направленные на повышение качества настоящих методических указаний.

Уважаемые обучающиеся!

Приступая к изучению новой для Вас учебной дисциплины, начните с вдумчивого прочтения разработанных для Вас кафедрой специальных методических указаний. Это поможет Вам вовремя понять и правильно оценить ее роль в Вашем образовании.

Ознакомившись с организационными требованиями кафедры по этой дисциплине и соизмерив с ними свои силы, Вы сможете сделать осознанный выбор собственной тактики и стратегии учебной деятельности, уберечь самих себя от неразумных решений по отношению к ней в начале семестра, а не тогда, когда уже станет поздно. Используя эти указания, Вы без дополнительных осложнений подойдете к промежуточной аттестации по этой дисциплине. Успешность аттестации зависит, прежде всего, от Вас. Ее залог — ритмичная, целенаправленная, вдумчивая учебная работа, в целях обеспечения которой и разработаны эти методические указания.

1. Место учебной дисциплины в подготовке выпускника

Учебная дисциплина относится к дисциплинам ОПОП университета, состав которых определяется вузом и требованиями ФГОС.

Цель дисциплины: формирование теоретических знаний, практических умений и навыков в области физики и биофизики, необходимых для профессиональной деятельности.

В ходе освоения дисциплины обучающийся должен:

иметь целостное представление о физических законах, процессах и явлениях, происходящих в природе и технике;

знать: основные физические явления, законы и теории физики и биофизики;

уметь: применять знания физических явлений, законы физики для анализа процессов в биологических системах;

владеть навыками: проведения физического эксперимента и оценки погрешности измерений.

1.1. Перечень компетенций с указанием этапов их формирования в результате освоения учебной дисциплины:

_	Компетенции, ррмировании которых иствована дисциплина	Код и наименование	формируем	Компоненты компетенций, формируемые в рамках данной дисциплины (как ожидаемый результат ее освоения)				
код	наименование	индикатора достижений компетенции	знать и понимать	уметь делать (действовать)	владеть навыками (иметь навыки)			
	1		2	3	4			
		щепрофессиональ	ные компетенц	ии				
ОПК-4	Способен использовать в профессиональной деятельности методы решения задач с применением современного оборудования при разработке новых технологий и использовать современную профессиональную методологию для проведения экспериментальных исследований и интерпретации их результатов	ИД-1 _{ОПК-4} Находит современное оборудование и использует профессиональну ю методологию для проведения экспериментальны х исследований и интерпретации полученных результатов	технические возможности современного специализированного оборудования, методы решения задач профессиональной деятельности	применять современные технологии и методы исследований в профессиональ ной деятельности, интерпретировать полученные результаты	навыками работы со специализирова нным оборудованием для реализации поставленных задач при проведении исследований и разработке новых технологий			

1.2. Описание показателей, критериев и шкал оценивания и этапов формирования компетенций в рамках дисциплины

	1.2. 0	писание показ	вателей, критериев и ш 	кал оценивания и эта 	от о	мпетенции в рамках ди ванности компетенций	ісциплины		
				WOMEOTOWING HO	уровни сформиро	ванности компетенции		-	
				компетенция не	минимальный	средний	высокий		
				сформирована	Ополия сформира	ванности компотонний		1	
				Оценки сформированности компетенций					
				2	•	4	5	4	
				Оценка	Оценка	Оценка «хорошо»	Оценка «отлично»		
				«неудовлетворительн			,	Формы и	
	Код		Показатель	16		иированности компетенции		средства	
Индекс и	индикатора	Индикаторы	оценивания – знания,	Компетенция в	Сформированность	Сформированность	Сформированность	контроля	
название	достижений	компетенции	умения, навыки	полной мере не	компетенции	компетенции в целом	компетенции полностью	формиро-	
компетенции	компетенции	компетенции	(владения)	сформирована.	соответствует	соответствует	соответствует	вания	
	компетенции		(владения)	Имеющихся знаний,	минимальным	требованиям.	требованиям. Имеющихся	компе-	
				умений и навыков	требованиям.	Имеющихся знаний,	знаний, умений, навыков и	тенций	
				недостаточно для	Имеющихся знаний,	умений, навыков и	мотивации в полной мере		
				решения	умений, навыков в	мотивации в целом	достаточно для решения		
				практических	целом достаточно для	достаточно для	сложных практических		
				(профессиональных)	решения практических	решения стандартных	(профессиональных)		
				задач	(профессиональных)	практических	задач		
					задач	(профессиональных)			
					задач				
	1		I a	Критерии оце			05		
		Полнота	Знать: технические	Не знает технические	Поверхностно знаком с	Знает технические	Свободно ориентируется в		
		знаний	возможности	возможности	техническими	возможности	технических возможностях		
			современного	современного	возможностями	современного	современного		
ОПК-4			специализированного	специализированно-	современного	специализированного	специализированного		
Способен			оборудования, методы	го оборудования,	специализированного	оборудования, методы	оборудования, в методах		
использовать в			решения задач	методы решения	оборудования, методами	решения задач	решения задач		
профессиональн			профессиональной	задач	решения задач	профессиональной	профессиональной		
ой деятельности			деятельности	профессиональной	профессиональ-ной	деятельности	деятельности		
методы решения		Hammuna	V	деятельности	деятельности	V	V	Отчет по	
задач с		Наличие	Уметь: применять	Не умеет применять	Слабо умеет применять	Умеет применять	Уверенно применяет	лаборато	
применением		умений	современные	современные	современные технологии	современные	современные технологии и	рным	
современного			технологии и методы	технологии и методы	и методы исследований	технологии и методы	методы исследований в	работам,	
оборудования	1417.4		исследований в	исследований в	в профессиональной	исследований в	профессиональной	виртуальн	
при разработке	ИД-1 _{ОПК-4}		профессиональной	профессиональной	деятельности,	профессиональной	деятельности,	ая	
НОВЫХ			деятельности, интерпретировать	деятельности, интерпретировать	интерпретировать полученные результаты	деятельности, интерпретировать	интерпретирует полученные результаты	лаборато	
технологий и			полученные	полученные	полученные результаты	полученные результаты	полученные результаты	рная	
использовать			результаты	результаты		полученные результаты		работа,	
современную		Hammuna	' '	' '	C5	D	V	тестирова	
профессиональн ую методологию		Наличие			Слабо владеет	Владеет навыками	Уверенно владеет	ние, экзамен	
1 -		навыков	·		навыками работы со	работы со	навыками работы со	JNJAINICH	
для проведения экспериментальн		(владение	специализированным	' '	специализированным	специализированным	специализированным		
ых исследований		опытом)	оборудованием для	оборудованием для	оборудованием для	оборудованием для	оборудованием для		
и интерпретации			реализации	реализации	реализации	реализации	реализации поставленных		
их результатов			поставленных задач	поставленных задач	поставленных задач при	поставленных задач	задач при проведении исследований и		
NA POSYMBIATOR			при проведении	при проведении	проведении	при проведении			
			исследований и разработке новых	исследований и разработке новых	исследований и разработке новых	исследований и разработке новых	разработке новых		
					• •	1	технологий		
			технологий	технологий	технологий	технологий	1	1	

2. Структура учебной работы, содержание и трудоёмкость основных элементов дисциплины 2.1. Организационная структура, трудоемкость и план изучения дисциплины

			Трудоемк	ость, час	
Вид учебной работ	Li		семестр	, курс*	
Вид учесной расст	ы	очная	форма	заочная форма	
		№ сем.1	№ сем.2	№ курса 1	№ курса
1. Контактная работа	36	-	8	-	
1. 1. Аудиторные занятия, всего	36	-	8	-	
- лекции		12	-	4	-
- практические занятия (включая семинарь	1)	-	-	-	-
- лабораторные работы		24	-	4	-
1.2. Консультации (в соответствии с учебн	ным планом)	-	-	-	-
2. Внеаудиторная академическая работа	1	36	-	91	-
2.1. Фиксированные виды внеаудиторны	ых самостоятельных				
работ:		-	-	-	-
Выполнение и сдача/защита индивидуальн	юго/группового задания				
в виде**		-	-	-	-
- виртуальная лабораторная работа		6	-	6	-
2.2. Самостоятельное изучение тем/вопр	оосов программы	8	-	73	-
2.3. Самоподготовка к аудиторным заня	меит	12	-	2	-
2.4 Самоподготовка к участию и участие	в контрольно-				
оценочных мероприятиях, проводимых в	рамках текущего	10		10	
контроля освоения дисциплины (за исключ	нением учтённых в пп.	10	_	10	-
2.1 – 2.2):					
3. Подготовка и сдача экзамена по итога	36	_	9	_	
дисциплины		30	-	9	-
ОБЩАЯ трудоемкость дисциплины:	Часы	108	-	108	-
овщил грудоемкость дисциплины.	Зачетные единицы	3	-	3	-

Примечание:

2.2. Укрупнённая содержательная структура учебной дисциплины и общая схема её реализации в учебном процессе

			у -	COLICIVI	проце									
		Трудоемкость раздела и ее распределение по видам							идам					
					чебной					Z	×			
				Кон	тактная	работа	a	BAPC		Ĕ	на Оы С			
			Ay,	диторн	иторная работа					5 5 ž	, й Тор Зд			
					заня	ятия	ບ⋝			Z ± E E	고 Sa Ba			
	Номер и наименование раздела дисциплины. Укрупненные темы раздела	общая	всего	лекции	практические (всех форм)	лабораторные	Консультации (в соответствии с учебным планом	всего	Фиксированные виды	формы текущего контроля успеваемости промежуточной аттестации	NeNe компетенций, на формирование которых ориентирован раздел			
	1	2	3	4	5	6	7	8	9	10	11			
	Очная форма обучения													
	Биомеханика. Термодинамика			1 1										
	биологических процессов													
	1.1. Биомеханика		36 18											
1	1.2. Гидродинамика и	36		18	18 6	6	6	6	-	12	-	18	3	
	гемодинамика													
	1.3. Термодинамика									d)				
	биологических процессов									Ĭ				
	Электрические и оптические явления в биологических системах									Тестирование				
	2.1. Электрические явления в									Te				
2	биологических системах	36	18	6	-	12	-	18	3		ОПК-4			
	2.2. Геометрическая и													
	волновая оптика													
	2.3. Квантовая природа													
	излучения													
	Промежуточная аттестация	36	×	×	×	×	×	×	×	Экзак	иен			
	Итого по дисциплине:	108	36	12	-	24	-	36	6					

^{* –} *семестр* – для очной и очно-заочной формы обучения, *курс* – для заочной формы обучения;
** – КР/КП, реферата/эссе/презентации, контрольной работы (для обучающихся заочной формы обучения), расчетнографической (расчетно-аналитической) работы и др.;

	Заочная форма обучения										
1	Биомеханика. Термодинамика биологических процессов 1.1. Биомеханика 1.2. Гидродинамика и гемодинамика 1.3. Термодинамика	40	6	4	-	2	-	34	3	1e	ОПК-4
2	биологических процессов Электрические и оптические явления в биологических системах 2.1. Электрические явления в биологических системах 2.2. Геометрическая и волновая оптика	59	2	0	-	2	-	57	3	Тестирование	ОПК-4
	2.3. Квантовая природа излучения	9									
<u> </u>	Промежуточная аттестация		×	×	×	×	×	×	×	Экзан	иен
	Итого по дисциплине:	108	8	4	-	4	-	91	6		

3. Общие организационные требования к учебной работе обучающегося

3.1. Организация занятий и требования к учебной работе обучающегося

Организация занятий по дисциплине носит циклический характер. По двум разделам предусмотрена взаимоувязанная цепочка учебных работ: лекция — самостоятельная работа обучающихся (аудиторная и внеаудиторная). На занятиях студенческая группа получает задания и рекомендации.

Для своевременной помощи обучающимся при изучении дисциплины кафедрой организуются индивидуальные и групповые консультации, устанавливается время приема выполненных работ.

Учитывая статус дисциплины к её изучению предъявляются следующие организационные требования:

- обязательное посещение обучающимся всех видов аудиторных занятий;
- ведение конспекта в ходе лекционных занятий;
- качественная самостоятельная подготовка к практическим занятиям, активная работа на них;
- активная, ритмичная самостоятельная аудиторная и внеаудиторная работа обучающегося, своевременная сдача преподавателю отчетных документов по аудиторным и внеаудиторным видам работ;
- в случае наличия пропущенных обучающимся занятиям, необходимо получить консультацию по подготовке и оформлению отдельных видов заданий.

Для успешного освоения дисциплины, обучающемуся предлагаются учебно-информационные источники в виде учебной, учебно-методической литературы по всем разделам.

3.2. Условия допуска к экзамену

Экзамен является формой контроля, который выставляется обучающемуся согласно «Положения о текущем контроле успеваемости, промежуточной аттестации обучающихся по программам высшего образования (бакалавриат, специалитет, магистратура) и среднего профессионального образования в ФГБОУ ВО Омский ГАУ», выполнившему в полном объеме все перечисленные в п.2-3 требования к учебной работе, прошедший все виды тестирования, выполнивший виртуальную лабораторную работу с оценкой «зачтено».

В случае не полного выполнения указанных условий по уважительной причине, обучающемуся могут быть предложены индивидуальные задания по пропущенному учебному материалу.

4. Лекционные занятия

Для изучающих дисциплину читаются лекции в соответствии с планом, представленным в таблице 3.

Таблица 3 - Лекционный курс.

N	<u>o</u>			икость по лу, час.	Применяемые
раздела	лекции	Тема лекции. Основные вопросы темы	очная форма	заочная форма	интерактивные формы обучения
1	2	3	4	5	6

		Тема: Биомеханика					Пек	ция-
	1	1. Кинематика. Динамика. Статика			2	-	визуализация	
		2. Колебания и волны					Bridyas	МЗации
1		Тема: Гидродинамика и гемодинам	ика				Пои	(ЦИЯ-
'	1 2 1. Гидродинамика идеальной и реальной жидкости					2		
		2. Гемодинамика					Визуал	тизация
	Тема: Термодинамика биологических процессов						По	
	3	1. Первое начало термодинамики в	биологи	1И	2	2		(ЦИЯ-
		2. Второе начало термодинамики в	биологи	И			визуал	тизация
		Тема: Электрические явления в би			Пошила			
	4	1. Постоянное электрическое поле	и его де	йствие на организм	2	-	Лекция- визуализация	
		2. Постоянный электрический ток и	его дей	ствие на организм				
		Тема: Геометрическая и волновая	оптика				Пол	
2	5	1.Законы геометрической оптики. Л	инзы		2	-	Лекция- визуализация	
		2. Дисперсия, интерференция, диф	ракция и	и поляризация света				
		Тема: Квантовая природа излучен	ИЯ				Пол	
	6	1. Тепловое излучение. Фотоэффе	кт		2	-		ция-
		2. Биологическое действие оптичес	ких излу	чений			Визуал	тизация
	Общая трудоемкость лекционного курса				12		Х	
	Всего лекций по дисциплине: час. И				1з них в интерактивной форме:			час.
	- очная форма обучения 12 - очная обучения					12		
		- заочная форма обучения	4		- заочна	ая форма об	учения	4

5. Лабораторные занятия по дисциплине и подготовка к ним

Лабораторные занятия по курсу проводятся в соответствии с планом, представленным в таблицах 4.

Таблица 4 - Примерный тематический план лабораторных занятий по разделам учебной дисциплины

	Nº	ı	писрпый темати темитинат засорат	Трудоем	икость ЛР, нас	Связь (
раздела	ЛЗ*	лР*	Тема лабораторной работы	очная форма	заочная форма	предусмотрена самоподготовка к занятию +/-	Защита отчета о ЛР во внеаудиторное время +/-	Применяемые интерактивные формы обучения*
1	2	3	4	5	6	7	8	9
	1	1	Теория погрешностей	2	1	+	ı	Работа в малых группах
	2	2	Определение геометрических размеров тела	2	-	+	-	Работа в малых группах
1	3	3	Определение момента инерции твердого тела	2	-	+	-	Работа в малых группах
	4	4	Измерение коэффициента вязкости жидкости методом Стокса	2	2	+	-	Работа в малых группах
	5-6	5	Определение артериального давления	4	-	+	-	Работа в малых группах
	7	6	Определение удельного сопротивления проводника мостиком Уитстона	2	-	+	-	Работа в малых группах
	8	7	Определение размеров микрообъектов с помощью микроскопа	2	2	+	-	Работа в малых группах
2	Определение показателя 9 8 преломления жидкостей при			2	-	+	-	Работа в малых группах
	10	Определение длины световой		2	-	+	-	Работа в малых группах
	11-12	10	Определение концентрации сахара в растворе поляриметром	4	-	+	-	Работа в малых группах

Итого ЛР	Общая трудоемкость ЛР	24	4	X				
* в т.ч. при использовании материалов MOOK «Название», название ВУЗа-разработчика, название платформы и ссылка на								
курс (с указанием д	аты последнего обрашения)							

Подготовка обучающихся к лабораторным занятиям осуществляется с учетом общей структуры учебного процесса. На лабораторных занятиях осуществляется текущий аудиторный контроль в виде опроса, по основным понятиям дисциплины.

выполнение домашнего задания к Подготовка к лабораторным занятиям подразумевает очередному занятию по заданиям преподавателя, выдаваемым в конце предыдущего занятия.

Для осуществления работы по подготовке к занятиям, необходимо ознакомиться с методическими указаниями по дисциплине, внимательно ознакомиться с литературой электронными ресурсами, с рекомендациями по подготовке, вопросами для самоконтроля.

6. Общие методические рекомендации по изучению отдельных разделов дисциплины

При изучении конкретного раздела дисциплины, из числа вынесенных на лекционные и лабораторные занятия, обучающемуся следует учитывать изложенные ниже рекомендации. Обратите на них особое внимание при подготовке к аттестации.

Работа по теме прежде всего предполагает ее изучение по учебнику или пособию. Следует обратить внимание на то, что в любой теории, есть либо неубедительные, либо чересчур абстрактные, либо сомнительные положения. Поэтому необходимо вырабатывать самостоятельные суждения, дополняя их аргументацией, что и следует демонстрировать на лабораторных занятиях. Для выработки самостоятельного суждения важным является умение работать с научной литературой. Поэтому работа по теме кроме ее изучения по учебнику, пособию предполагает также поиск по теме научных статей в научных журналах. Такими журналами являются: "Успехи физических наук", "Биофизика" и др. Выбор статьи, относящейся к теме, лучше делать по последним в году номерам, где приводится перечень статей, опубликованных за год.

При изучении раздела (темы) обучающемуся требуется освоить материалы: лекции, лабораторный практикум, пройти тестирование.

Самостоятельная подготовка предполагает использование ряда методов.

1. Конспектирование. Конспектирование позволяет выделить главное в изучаемом материале и выразить свое отношение к рассматриваемой автором проблеме.

Техника записей в конспекте индивидуальна, но есть ряд правил, которые могут принести пользу его составителю: начиная конспект, следует записать автора изучаемого произведения, его название, источник, где оно опубликовано, год издания. Порядок конспектирования:

- а) внимательное чтение текста;
- б) поиск в тексте ответов на поставленные в изучаемой теме вопросы;
- в) краткое, но четкое и понятное изложение текста;
- г) выделение в записи наиболее значимых мест;
- д) запись на полях возникающих вопросов, понятий, категорий и своих мыслей.
- 2. Записи в форме тезисов, планов, аннотаций, формулировок определений. Bce перечисленные формы помогают быстрой ориентации в подготовленном материале, подборе аргументов в пользу или против какого- либо утверждения.
- 3. Словарь понятий и категорий. Составление словаря помогает быстрее осваивать новые понятия и категории, увереннее ими оперировать. Подобный словарь следует вести четко, разборчиво, чтобы удобно было им пользоваться. Из приведенного в УМК глоссария нужно к каждому семинару выбирать понятия, относящиеся к изучаемой теме, объединять их логической схемой в соответствии с вопросами семинарского занятия.

Раздел 1. Биомеханика. Термодинамика биологических процессов

Краткое содержание Кинематика. Поступательное движение и его характеристики (путь, скорость, ускорение).

Обобщение понятия скорости (скорости поглощения вещества, теплообмена, химической реакции и др.). Нормальное, тангенциальное и полное ускорение при криволинейном движении. Вращательное движение и его характеристики (угловой путь, угловая скорость, угловое ускорение, период и частота). Связь между линейными и угловыми величинами. Динамика. Силы в механике. Законы Ньютона. Момент силы. Момент инерции. Моменты инерции тел правильной геометрической формы. Теорема Штейнера. Моменты инерции конечностей в локомоторном аппарате животных. Основное уравнение динамики вращательного движения. Работа, мощность, энергия (кинетическая, потенциальная). Законы сохранения в механике. Статика. Условия равновесия тел. Опорнодвигательный аппарат.

Вопросы для самоконтроля по разделу:

- 1. Что изучает кинематика? динамика? статика?
- 2. Что такое материальная точка? твёрдое тело?
- 3. Дайте определения и запишите формулы для средней и мгновенной скорости, для среднего и мгновенного ускорения.
- 4. Животное разгоняется, а затем тормозит. Как при этом направлены вектора скорости и ускорения?
- 5. Какой физический смысл имеют нормальное и тангенциальное ускорения.
- 6. Дайте определения и запишите формулы угловой скорости, углового ускорения. В каких единицах они измеряются?
- 7. Сформулируйте законы Ньютона.
- 8. Приведите примеры сил, действующих в природе. Какое значение они имеют для живых организмов.
- 9. Какой физический смысл момента инерции?
- 10. Напишите формулы для механической работы и мощности. Дайте определения этих величин. В каких единицах они измеряются?
- 11. Два человека разной массы одновременно поднялись на пятый этаж. Кто из них развил большую мошность?
- 12. Назовите виды механической энергии. Какой физический смысл они имеют?
- 13. Сформулируйте закон сохранения импульса. Какие животные непосредственно "пользуются" этим законом.
- 14. Сформулируйте закон сохранения момента импульса.
- 15. Если вращающийся на льду фигурист хочет остановится, он разводит руки в сторону, а если хочет вращаться быстрее, прижимает руки к туловищу. Как объяснить это явление?
- 16. Как будет меняться сила натяжения мышц при разгибании руки, удерживающей груз?

Механические колебания и волны. Гармонические колебания и их характеристики. Маятники (пружинный, физический, математический), периоды их колебаний. Свободные (незатухающие и затухающие) и вынужденные колебания. Резонанс. Резонансные явления в биологических системах. Волны в упругих средах. Уравнение и график волны. Физические основы акустики. Звук как физическое и психофизическое явление. Уровень интенсивности звука. Область слухового восприятия человека. Акустические методы в ветеринарной клинике (перкуссия, аускультация). Биофизика инфразвука. Биофизика ультразвуковая терапия, ультразвуковая хирургия, ультразвуковая диагностика.

Вопросы для самоконтроля по разделу:

- 1. Какие колебания называются гармоническими? Напишите уравнение гармонических колебаний и назовите характеристики колебаний.
- 2. Дайте определение амплитуды, периода и частоты колебаний.
- 3. Какой маятник называют математическим, а какой физическим? Как найти период их колебаний?
- 4. Какие колебания называют затухающими?
- 5. Почему в природе не бывает свободных незатухающих колебаний?
- 6. Какие колебания называют вынужденными? Что такое резонанс? Приведите примеры.
- 7. Какая волна называется поперечной, а какая продольной?
- 9. Укажите частотный диапазон звуковых волн.
- 10. Почему область слышимости человеческого уха отличается от прямоугольника? Как деформируется эта область с возрастом человека?
- 11. Каковы методы получения ультразвука?
- 12. Расскажите о применении ультразвука в ветеринарии.

<u>Физические основы гемодинамики.</u> Уравнение неразрывности струи. Закон Бернулли. Статическое, гидростатическое и динамическое давления. Применения закона Бернулли: водоструйный насос, пульверизатор. Закон Ньютона для силы внутреннего трения. Методы определения вязкости: метод Стокса (метод падающего шарика), метод Пуазейля (метод капиллярного вискозиметра). Режимы течения жидкости. Число Рейнольдса. Физические модели сердечно-сосудистой системы: механическая модель; электрическая модель. Работа и мощность сердца. Пульсовая волна и её характеристики. Методы измерения давления крови.

Вопросы для самоконтроля по разделу:

- 1. Запишите уравнение Бернулли. Каков физический смысл этого уравнения, каждого члена этого уравнения?
- 2. Объясните принцип действия приборов, применяемых в ветеринарии и основанных на законе Бернулли?
- 3. Какие жидкости называют неньютоновскими? Можно ли считать кровь неньютоновской жидкостью? Обоснуйте ответ.

- 4. Чем обусловлена вязкость жидкости? От чего зависит?
- 5. При образовании сливок жировые шарики всплывают вверх. Какие силы действуют на шарики? Как направлены эти силы?
- 6. Сформулируйте закон Стокса. Как определяют вязкость жидкости на основе закона Стокса?
- 7. Сформулируйте закон Пуазейля. Объясните принцип действия вискозиметра, основанного на этом законе.
- 8. От чего зависит скорость оседания эритроцитов? Каким методом её определяют?
- 9. Выведите формулу для вычисления работы сердца на основе уравнения Бернулли.
- 10. Объясните механизм образования пульсовой волны.
- 11. От каких физических величин зависит скорость пульсовой волны?
- 12. На чём основаны методы измерения артериального давления (прямой метод и метод Короткова)?
- 13. В каких случаях поток крови в артериях становится турбулентным? С чем связаны шумы (тоны Короткова), прослушиваемые при измерении артериального давления?

биологических Термодинамическая система. Состояние Термодинамика систем. термодинамического равновесия и стационарное состояние. Первое начало термодинамики в биологии. Тепловой баланс живого организма. Метод непрямой калориметрии. Метод прямой калориметрии. Теплопродукция. Физические механизмы терморегуляции животных: теплопроводность, конвекция, тепловое излучение, испарение. Термодинамические методы лечения в ветеринарии. Второе начало термодинамики в биологии. Изменение энтропии в биологических системах. Теорема Пригожина. Принцип Ле Шателье-Брауна.

Вопросы для самоконтроля по разделу:

- 1. Что называют термодинамическим процессом? Какие процессы называют обратимыми и необратимыми? Приведите примеры.
- 2. В чём сущность второго начала термодинамики? Дайте определение энтропии. В каких процессах энтропия остаётся постоянной и в каких она возрастает?
- 3. Какие превращения энергии происходят в живом организме?
- 4. Сформулируйте закон Гесса и приведите примеры его применения в биологии.
- 5.От чего зависит теплопродукция живого организма?
- 6. Как зависит удельная теплопродукция с увеличением массы животного?
- 7. Каковы физические механизмы терморегуляции живого организма?
- 8. Напишите уравнение теплопроводности. Какие биологические ткани обладают большой и какие малой теплопроводностью?
- 9. От чего зависит интенсивность теплового потока при конвекции?
- 10. Какими физическими свойствами должны обладать вещества, применяемые в тепловой ветеринарной физиотерапии?
- 11. Какое состояние открытой термодинамической системы называют стационарным? Чем оно отличается от равновесного? Приведите примеры.
- 12. Из чего складывается полное изменение энтропии в биологических системах?
- 13. Запишите уравнение Пригожина и объясните его физический смысл.
- 14. Сформулируйте принцип Ле Шателье-Брауна.

Раздел 2. Электрические и оптические явления в биологических системах

Краткое содержание

Постоянное электрическое поле и его действие на организм. Закон Кулона. Электростатическое поле и его характеристики (напряжённость, потенциал). Поток вектора напряженности. Теорема Гаусса. Диэлектрики в электрическом поле. Поляризация диэлектриков. Проводники в электрическом поле. Электроёмкость. Электрическое поле и живой организм. Постоянный электрический ток и его действие на организм. Электрический ток и его характеристики. Законы Ома, Джоуля - Ленца. Электродвижущая сила. Правила Кирхгофа. Электрический ток в различных средах. Действие постоянного электрического тока на живой организм. Магнитное поле и его действие на организм. Магнитное поле и его характеристики (магнитная индукция, напряжённость). Движение зарядов в магнитном поле. Сила Лоренца. Взаимодействие параллельных токов. Закон Ампера. Магнитное поле в веществе. Действие постоянного магнитного поля на организм.

Вопросы для самоконтроля по разделу:

- 1. Сформулируйте закон сохранения электрического заряда и закон Кулона.
- 2. Каковы характеристики электрического поля? В каких единицах они измеряются?
- 3. Сформулируйте теорему Гаусса. Для чего она применяется?
- 4. Как ведут проводники и диэлектрики в электрическом поле?
- 5. Дайте определение электрического тока.

- 6. Сформулируйте закон Ома для однородного участка цепи, для неоднородного участка, для замкнутой цепи.
- 7. Сформулируйте правила Кирхгофа.
- 8. Какое физиологическое действие оказывает постоянный электрический ток?
- 9. Как применяют методы электровоздействия в ветеринарии и животноводстве?
- 10. Как возникает магнитное поле? Приведите примеры магнитных полей различных объектов.
- 11. Как называется силовая характеристика магнитного поля? В каких единицах она измеряется?
- 12. По каким траекториям могут двигаться заряженные частицы в магнитном поле?
- 13. Как взаимодействуют параллельные токи? Напишите закон Ампера.
- 14. Дайте краткую характеристику пара- диа- и ферромагнетиков.
- 15. Расскажите о применение постоянных магнитов в ветеринарии.
- 16. Дайте определение магнитного потока. В каких единицах он измеряется?

<u>Геометрическая оптика.</u> Законы геометрической оптики. Полное отражение и его применение. Линзы. Правила построения изображений в линзах. Геометрический ход лучей в микроскопе. Глаз как оптическая система. <u>Волновая оптика.</u> Природа света. Интерференция и дифракция света. Разрешающая способность оптических приборов. Предел разрешения оптического микроскопа. Поляризация света. Законы Малюса и Брюстера. Оптически активные вещества. Поляриметрия. Взаимодействие света с веществом. Дисперсия света. Поглощение света. <u>Квантовая природа излучения.</u> Тепловое излучение и его характеристики. Законы Стефана - Больцмана, Вина. Фотоэффект. Биологическое действие оптических излучений.

Вопросы для самоконтроля по разделу:

- 1. Что изучает оптика? геометрическая оптика? волновая оптика? квантовая оптика?
- 2. Что называют линзой? тонкой линзой?
- 3. Что называют оптическим центром линзы? фокусом? фокусным расстоянием? фокальной плоскостью?
- 4. Дайте определения энергетических и световых фотометрических величин. Какие единицы измерения этих величин.
- 5. Каково значение фотометрических измерений в ветеринарии и зоотехнии?
- 6. Дайте определение интерференции света. Какие волны называют когерентными?
- 7. Чем отличаются интерференционные картины, полученные при использовании монохроматического и белого света.
- 8. Что называют дифракцией света? Объясните дифракцию света на основе принципа Гюйгенса Френеля.
- 9. Почему явление дифракции света ограничивает разрешающую способность оптических приборов?
- 10. Что называют дифракционной решеткой?
- 11. Какой свет называют естественным? поляризованным? плоскополяризованным?
- 12. Как естественный свет можно преобразовать в поляризованный?
- 13. Что называют оптически активными веществами? Приведите примеры.
- 14. Что называют дисперсией света?
- 15. Что называют тепловым излучением?

Процедура оценивания

По всем разделам дисциплины проводятся лекции, лабораторные работы. Контроль осуществляется по разделам дисциплины в соответствии с планом. Контроль на лабораторных занятиях осуществляется в виде проверки письменного отчета по лабораторной работе и защиты лабораторной работы в форме собеседования.

По итогам изучения каждой темы дисциплины проводится контроль в форме тестирования.

7. Общие методические рекомендации по оформлению и выполнению отдельных видов ВАРС

7.1. Организация выполнения и проверка виртуальной лабораторной работы

Обучающимся предлагается выполнить виртуальную лабораторную работу, используя электронную лабораторию по физике: https://efizika.ru/ Тема виртуальной лабораторной работы выдаётся обучающемуся на первой занятии. Выполнив виртуальную лабораторную работу, обучающийся оформляется отчёт, который включает: название работы; цель работы; теоретическую часть (состоит из 7-10 вопросов с ответами); экспериментальную часть (таблицы и расчеты) и вывод. Отчет в формате .pdf прикрепляется в ЭИОС в элемент "Виртуальная лабораторная работа".

Перечень тем виртуальных лабораторных работ

- Изучение движения тела брошенного под углом к горизонту
- Изучение вращательного движения тел на приборе Обербека
- Определение коэффициента трения

- Определение коэффициента вязкости жидкостей
- Движение тела под действием силы Архимеда и силы тяжести
- Изучение движения тела под действием постоянной силы
- Исследование затухающих колебаний математического маятника
- Изучение колебаний физического маятника
- Определение плотности вещества
- Измерение сопротивления проводника при помощи амперметра и вольтметра
- Измерение напряжения на различных участках электрической цепи
- Измерение силы тока амперметром
- Изучение закона Джоуля-Ленца
- Исследование зависимости сопротивления проводника от его длины, площади поперечного сечения и материала
- Изучение закона Малюса
- Изучение сплошного и линейчатого спектров
- Определение температуры нагретых тел с помощью оптического пирометра и др.

Процедура выбора темы обучающимся

Тематика виртуальной лабораторной работы определяется на очном занятии.

7.1.1. ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ виртуальной лабораторной работы

- «зачтено» выставляется, если обучающийся изучил тему виртуальной лабораторной работы, ориентируясь на вопросы для самоподготовки, смог правильно выполнить эксперимент в виртуальном практикуме, сделать необходимые расчеты и выводы, оформил материал в виде отчета по виртуальной лабораторной работе.
- «не зачтено» выставляется, если обучающийся выполнил эксперимент в виртуальном практикуме с ошибками, не смог выполнить необходимые расчеты и сделать выводы, неаккуратно оформил материал в виде отчета по виртуальной лабораторной работе.

7.2. Рекомендации по самостоятельному изучению тем

вопросы

для самостоятельного изучения темы «Акустика»

- 1. Звук как физическое и психофизическое явление.
- 2. Область слухового восприятия человека. Акустические методы в ветеринарной клинике (перкуссия, аускультация).
- 3. Биофизика инфразвука и ультразвука.

вопросы

для самостоятельного изучения темы «Магнитное поле и его действие на организм»

- 1. Магнитное поле и его характеристики (магнитная индукция, напряжённость).
- 2. Движение зарядов в магнитном поле. Сила Лоренца. Взаимодействие параллельных токов. Закон Ампера.
- 3. Действие постоянного магнитного поля на организм.

7.2.1 ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ

самостоятельного изучения темы

- «зачтено» выставляется, если обучающийся, прошёл тестирование и количество правильных ответов от 61-100%.
- «не зачтено» выставляется, если обучающийся прошёл тестирование и количество правильных ответов менее 61%.

8. Входной контроль и текущий (внутрисеместровый) контроль хода и результатов учебной работы

8.1. Входной контроль

Обучающиеся проходят входной контроль по физике в ЭИОС в форме тестирования. Тест включает 10 тестовых заданий по темам: кинематика, динамика, молекулярная физика, термодинамика, электростатика, постоянный электрический ток, магнетизм, колебания и волны, оптика, квантовая и ядерная физика. На выполнение теста дается 30 минут.

8.1.1. ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ

ответов на вопросы входного контроля

- оценка «отлично» выставляется обучающемуся, если получено более 85% правильных ответов.
- оценка «хорошо» получено от 66 до 85% правильных ответов.
- оценка «удовлетворительно» получено от 50 до 65% правильных ответов.
- оценка «неудовлетворительно» получено менее 50% правильных ответов.

8.2. Текущий контроль успеваемости

В течение семестра, проводится текущий контроль успеваемости по дисциплине, к которому обучающийся должен быть подготовлен.

Отсутствие пропусков аудиторных занятий, активная работа на лабораторных занятиях, общее выполнение графика учебной работы являются основанием для получения положительной оценки по текущему контролю.

8.2.1. ВОПРОСЫ

для самоподготовки к лабораторным занятиям

В процессе подготовки к лабораторному занятию обучающийся письменно отвечает на представленные ниже вопросы в рабочей тетради к лабораторным работам.

Лабораторная работа № 1. Теория погрешностей

- 1. Что называется истинным значением измеряемой величины?
- 2. Что называется абсолютной погрешностью измерения?
- 3. Что называется относительной погрешностью измерения?
- 4. Как записывается конечный результат измерения?
- 5. Какие величины называются случайными?
- 6. Как определяется среднее (истинное) значение случайной величины каждого измерения?
- 7. Какие существуют способы измерения физической величины? Приведите примеры.

Лабораторная работа № 2. Определение геометрических размеров тела

- 2. Что называется абсолютной погрешностью измерения?
- 3. Что называется относительной погрешностью измерения?
- 4. Как записывается конечный результат измерения?
- 1. Перечислите основные элементы штангенциркуля. Какова цена деления основной и вспомогательной шкал?
- 2. Перечислите основные элементы микрометра. Какова цена деления основной и вспомогательной шкал?
- 3. По которой формуле определяется размер, измеряемый штангенциркулем и микрометром?
- 4. Какие способы измерения физической величины вы знаете? В чём их сущность?
- 5. Что такое погрешность измерения? Какие типы погрешностей вы знаете? Приведите примеры.
- 6. Запишите формулы для определения абсолютной и относительной погрешностей измерения. Что характеризуют эти погрешности?

Лабораторная работа № 3. Определение момента инерции тела

- 1. Что называется моментом инерции твердого тела? Укажите единицу измерения.
- 2. Что называется моментом силы? Укажите единицу измерения.
- 3. Что называется плечом силы?
- 4. Запишите формулировку и формулу основного уравнения динамики вращательного движения.
- 5. Как зависит момент инерции тела от положения грузов относительно оси вращения?
- 6. Выведите рабочую формулу для расчета момента инерции крестообразного маятника.
- 7. Вычислить момент инерции руки человека относительно плечевого сустава. Масса руки 4,1 кг, её длина (при пальцах сжатых в кулак) 56 см. С каким ускорением начнёт перемещаться рука из горизонтального положения в вертикальное по действием силы тяжести? Руку считать однородным стержнем.
- 8. Как показала скоростная киносъёмка, падающая кошка сразу начинает быстро вращать хвостом. При этом её туловище разворачивается в обратную сторону до тех пор, пока не станет в такое положение, при котором можно удобно приземлится на лапы. Оценить, на какой угол повернётся туловище кошки при падении с 3 этажа (высота 7 м), если угловая скорость вращения хвоста 10 рад/с. Для оценки хвост считать тонким однородным стержнем длины 20 см и массы 100 г, а туловище однородным цилиндром массы 2 кг и радиуса 50 см. Хвост вращается в плоскости перпендикулярной оси туловища. Сопротивление воздуха при падении не учитывать.

Лабораторная работа № 4. Определение коэффициента вязкости жидкости методом Стокса

- 1. Что называется вязкостью? Чем обусловлена вязкость жидкости? От чего она зависит вязкость?
- 2. Запишите формулу Ньютона для силы внутреннего трения. Расшифруйте величины, входящие в эту формулу.
- 3. Каков физический смысл коэффициента вязкости? Укажите единицу измерения в СИ.
- 4. На основании каких законов шарик движется равномерно прямолинейно? Запишите формулировки этих законов.
- 5. Какие силы действуют на шарик, падающий в жидкости. Выведите рабочую формулу для определения коэффициента вязкости.
- 6. Перечислите недостатки и достоинства метода Стокса.
- 7. Какие режимы течения жидкости вы знаете? Дайте им определения.
- 8. Скорость оседания эритроцитов (СОЭ) для свиньи в норме равна 8 мм/ч. При воспалительном процессе эритроциты слипаются в комочки, средний диаметр которых на 30% больше диаметра одного эритроцита, а вязкость плазмы уменьшается на 15%. Какова будет в этом случае величина СОЭ?
- 9. Во сколько раз меняется скорость оседания эритроцитов у людей, больных сфероцитозом, по сравнению с нормой, если средний радиус эритроцита при этом заболевании возрастает в 1,5 раза?

Лабораторная работа № 5. Определение артериального давления

- 1. Что такое давление? Укажите единицы измерения.
- 2. Нарисуйте механическую модель сердечно-сосудистой системы (ССС). Укажите аналогию между элементами механической модели и элементами ССС.
- 3. Нарисуйте электрическую модель ССС. Укажите аналогию между элементами электрической модели и элементами ССС.
- 4. Что такое пульсовая волна? С помощью механической модели поясните на рисунке образование пульсовой волны в эластичной трубе.
- 5. Запишите формулу скорости пульсовой волны. Расшифруйте величины.
- 6. Что понимают под систолическим и диастолическим давлением крови?
- 7. В чём заключается прямой метод измерения артериального давления? Какие недостатки этого метода? В каких случаях применяют этот метод?
- 8. На чём основан косвенный метод измерения артериального давления (метод Короткова)?
- 9. Дайте определения режимам течения реальной жидкости.
- 10. Для чего вычисляют число Рейнольдса. Запишите формулу.
- 11. Скорость течения крови в капиллярах составляет 0,005 м/с. Чему равна скорость в аорте, если суммарная площадь сечения капилляров в 800 раз больше площади сечения аорты?
- 12. Какая разность давлений поддерживается на участке артерии с внутренним диаметром 3 мм и длиной 10 см, если объёмный поток крови через артерию составляет $2 \cdot 10^{-5}$ м³/с?
- 10. В восходящей части аорты диаметром 3,2 см максимальная скорость крови достигает значения 60 см/с. Будет ли при этих условиях течение крови ламинарным или турбулентным?

Лабораторная работа № 6. Определение удельного сопротивления проводника мостиком Уитстона

- 1. Что называется электрическим током? Силой тока? Плотностью тока?
- 2. Условия существования электрического тока.
- 3. Физический смысл разности потенциалов, ЭДС и напряжения.
- 4. Законы Ома для однородного и неоднородного участка и полной цепи.
- 5. Сопротивление проводника. От чего зависит сопротивление проводника.
- 6. Удельное сопротивление, его физический смысл.
- 7. Законы Кирхгофа.
- 8. Выведите рабочую формулу для определения сопротивления проводника мостиком Уитстона.
- 9. При некоторых заболеваниях крупного рогатого скота применяют электрофорез ионов кальция. Какая масса кальция будет введена через 8 *мин* процедуры лечебного электрофореза, если плотность тока через активный электрод площади 350 *см*² равна 0,2 *мА/см*²?
- 10. Средняя мощность разряда электрического сома 8 *Bm* при напряжении в электрических органах 360 *B*. Время разряда 0,13 *мс*. Определить электроёмкость электрических органов сома.

Лабораторная работа № 7.Определение размеров микрообъектов с помощью микроскопа

- 1. Дайте определения характеристикам линзы: фокус, оптический центр.
- 2. Запишите правила построения изображения, даваемого линзой.
- 3. Запишите формулировку и формулу увеличения линзы.
- 4. Укажите основные части микроскопа. Для чего применяется оптический микроскоп?
- 5. Нарисуйте геометрический ход лучей в микроскопе.
- 6. Запишите формулу увеличения микроскопа.

- 7. Что представляет собой камера Горяева. Для каких целей в лабораторной работе она применяется?
- 8. Для каких целей применяется окулярный винтовой микрометр?
- 9. Хрусталик глаза можно условно считать стеклянной линзой с фокусным расстоянием в воздухе 1,5 см. Определить, каким будет фокусное расстояние глаза у ныряльщика (без маски) в воде.
- 10. Определить величину изображения среза мышечного волокна диаметром 8,5 мкм, рассматриваемого под микроскопом с фокусными расстояниями окуляра и объектива, соответственно равными 14 см и 0,2 см. Расстояние между фокусами объектива и окуляра 18 см.
- 9. Можно ли увидеть в микроскоп предмет, размер которого 0,3 *мкм*. Апертурный угол объектива равен 60°. Используется свет с длиной волны 0,5 *мкм*. Иммерсионная жидкость глицерин.

Лабораторная работа № 8. Определение показателя преломления жидкостей при помощи рефрактометра

- 1. Запишите законы отражения и преломления.
- 2. Каков физический смысл абсолютного и относительного показателя преломления?
- 3. Что называют явлением полного внутреннего отражения?
- 4. Что называется дисперсией света? Какая дисперсия называется нормальной? аномальной?
- 5. Нарисуйте ход луча в призме. Запишите формулу, по которой определяется угол отклонения луча от первоначального направления.
- 6. Для чего применяется рефрактометр?

Лабораторная работа № 9. Определение длины световой волны

с помощью дифракционной решетки

- 1. Что представляет свет по волновой теории?
- 2. Дайте определение длины волны. В каких пределах находится длина волны для видимого света?
- 3. В чем состоит сущность явления интерференции света?
- 4. В чем состоит сущность явления дифракции света?
- 5. Что представляет собой дифракционная решетка, период дифракционной решетки?
- 6. Запишите принцип Гюйгенса Френеля.
- 7. Запишите условие тах и тіп при дифракции света от многих щелей.
- 8. Покажите ход лучей в дифракционной решетке.
- 9. Выведите рабочую формулу для расчета длины волны света.
- 10. Дифракционная решётка имеет период 1,25 мкм. Определите количество щелей на 1 мм.
- 11. Определите период дифракционной решётки, если углу дифракции 30° соответствует максимум четвёртого порядка для монохроматического света с длиной волны 0,7 *мкм*

Лабораторная работа № 10. Определение концентрации раствора сахара поляриметром

- 1. Какой свет называется плоскополяризованным? Постройте его графическое изображение.
- 2. Какой свет называется естественным? Постройте его графическое изображение.
- 3. Какой свет называется частично поляризованным? Постройте его графическое изображение.
- 4. Что собой представляет анализатор и поляризатор? Чем они отличаются друг от друга?
- 5. Нарисуйте ход светового луча через поляризатор и анализатор. Запишите формулу Малюса.
- 6. Запишите формулировку и формулу закона Брюстера. Поясните рисунком.
- 7. Какие вещества называются оптически активными? Приведите примеры. Запишите формулу для определения угла поворота плоскости поляризации.
- 8. Дайте определение удельному вращению плоскости поляризации для растворов?
- 9. От чего зависит удельное вращение?
- 10. Определить концентрацию сахара в моче человека, больного диабетом, если в трубке сахариметра длиной 20 см плоскость поляризации света повернулась на 40° . Удельное вращение сахара 0,665 град·м²/кг.
- 11. Вычислить угол полной поляризации при отражении света от сыворотки крови. Под каким углом свет при этом проходит в сыворотку?

8.2.2. ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ лабораторной работы

 «зачтено» выставляется, если обучающийся изучил тему лабораторной работы, ориентируясь на вопросы для самоподготовки, оформил материал в виде отчета по лабораторной работе, смог выполнить необходимые расчеты и сделать вывод; правильно ответил на вопросы при защите лабораторной работы. – «не зачтено» выставляется, если обучающийся неаккуратно оформил материал в виде отчета по лабораторной работе; не смог выполнить необходимые расчеты и сделать вывод; не ответил на вопросы при защите лабораторной работы.

9. Промежуточная (семестровая) аттестация по курсу

9.1	9.1. Нормативная база проведения						
	и обучающихся по результатам изучения дисциплины:						
1) действующее «Положение о	текущем контроле успеваемости, промежуточной аттестации						
обучающихся по программам высшего образования (бакалавриат, специалитет, магистратура) и							
среднего профессионального образования в ФГБОУ ВО Омский ГАУ»							
9.2. Основные характеристики							
промежуточной аттеста	ации обучающихся по итогам изучения дисциплины						
Цель	установление уровня достижения каждым обучающимся целей						
	обучения по данной дисциплине, изложенных в п.1.1 настоящего						
промежуточной аттестации -	документа						
Форма	экзамен						
промежуточной аттестации -	3K3aMen						
	1) подготовка к экзамену и сдача экзамена осуществляется за						
	счёт учебного времени (трудоёмкости), отведённого на						
Jaara ayaayaya	экзаменационную сессию для обучающихся, сроки которой						
Место экзамена	устанавливаются приказом по университету						
в графике учебного процесса:	2) дата, время и место проведения экзамена определяется						
	графиком сдачи экзаменов, утверждаемым деканом						
	выпускающего факультета						
Форма экзамена -	смешанной формы						
Prove sponencing organicia	дата, время и место проведения экзамена определяется						
Время проведения экзамена	графиком сдачи экзаменов, утверждаемым деканом факультета						
Aranauauuauuaa anasnama	1) представлена в фонде оценочных средств по дисциплине						
Экзаменационная программа	2) охватывает разделы №1-2 (в соответствии с п. 2.2						
по учебной дисциплине:	настоящего документа)						
Методические материалы,							
определяющие процедуры	TRADICTARDALL R MOUDA QUALQUILLY CRADICTA DO DISCUSARDALO						
оценивания знаний, умений,	представлены в фонде оценочных средств по дисциплине						
навыков:							

9.3. Плановая процедура проведения экзамена:

Подготовка к экзамену и сдача экзамена осуществляется за счёт учебного времени (трудоёмкости), отведённого на экзаменационную сессию для обучающихся, сроки которой устанавливаются приказом по университету.

Дата, время и место проведения экзамена определяется графиком сдачи экзаменов, утверждаемым деканом выпускающего факультета.

Основные условия допуска обучающегося к экзамену:

Обучающийся выполнил все виды учебной работы (включая самостоятельную) и отчитался об их выполнении в сроки, установленные графиком учебного процесса по дисциплине.

Плановая процедура проведения экзамена:

- 1. Дата, время и место проведения экзамена определяется графиком сдачи экзаменов, утверждаемым деканом факультета
 - 2. Форма экзамена смешанная
 - 3. Время подготовки 45 мин.

9.3.1. Перечень примерных вопросов к экзамену

- 1. Поступательное движение. Перемещение, скорость, ускорение. Обобщение понятия скорости (скорости химических реакций, переноса тепла и др.).
- 2. Вращательное движение. Угловая скорость и угловое ускорение. Связь линейных и угловых величин.
- 3. Законы Ньютона. Масса. Силы.
- 4. Момент инерции. Моменты инерции конечностей в локомоторном аппарате животных. Момент силы. Основное уравнение динамики вращательного движения.
- 5. Работа, мощность, энергия. Законы сохранения в механике.
- 6. Условия равновесия тел. Опорно-двигательный аппарат.
- 7. Основные понятия гидродинамики. Уравнение неразрывности струи.

- 8. Закон Бернулли. Применения закона Бернулли: водоструйный насос, пульверизатор.
- 9. Вязкость. Закон Ньютона. Методы определения вязкости жидкости.
- 10. Режимы течения жидкости. Число Рейнольдса.
- 11. Физические модели сердечно-сосудистой системы. Работа и мощность сердца.
- 12. Пульсовая волна и её характеристики.
- 13. Методы измерения давления крови.
- 14. Гармонические колебания и их характеристики.
- 15. Свободные и вынужденные колебания. Резонанс. Резонансные явления в биологических системах.
- 16. Механические волны. Уравнение и график волны.
- 17. Звуковые волны и их физические характеристики.
- 18. Акустические методы в ветеринарной клинике (перкуссия, аускультация).
- 19. Инфразвук и ультразвук.
- 20. Первое начало термодинамики для живых систем. Виды работ, совершаемые в организме.
- 21. Закон Гесса. Методы калориметрии.
- 22. Теплопродукция. Физические механизмы терморегуляции животных.
- 23. Термодинамические методы лечения в ветеринарии.
- 24. Второе начало термодинамики в биологии. Принцип Ле Шателье-Брауна.
- 25. Закон Кулона. Электростатическое поле и его характеристики (напряжённость, потенциал).
- 26. Диэлектрики и проводники в электрическом поле. Электрическое поле и живой организм.
- 27. Электрический ток и его характеристики. Законы Ома, Джоуля Ленца. Электродвижущая сила. Правила Кирхгофа.
- 28. Электрический ток в различных средах. Действие постоянного электрического тока на живой организм.
- 29. Законы геометрической оптики. Полное отражение и его применение.
- 30. Линзы. Правила построения изображений в линзах. Геометрический ход лучей в микроскопе.
- 31. Глаз как оптическая система.
- 32. Природа света. Интерференция и дифракция света. Разрешающая способность оптических приборов. Предел разрешения оптического микроскопа.
- 33. Поляризация света. Законы Малюса и Брюстера. Оптически активные вещества. Поляриметрия.
- 34. Взаимодействие света с веществом. Дисперсия света. Поглощение света.
- 35. Тепловое излучение и его характеристики. Законы Стефана Больцмана, Вина. Фотоэффект. Биологическое действие оптических излучений.

ПРИМЕРЫ ЭКЗАМЕНАЦИОННЫХ БИЛЕТОВ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Омский государственный аграрный университет имени П.А. Столыпина» Кафедра математических и естественнонаучных дисциплин

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1 по дисциплине «Физика биологических систем»

- 1. Теплопродукция. Физические механизмы терморегуляции животных.
- 2. Поляризация света. Законы Малюса и Брюстера. Оптически активные вещества. Поляриметрия.
- 3. Скорость оседания эритроцитов (СОЭ) для свиньи в норме равна 8 мм/ч. При воспалительном процессе эритроциты слипаются в комочки, средний диаметр которых на 30% больше диаметра одного эритроцита, а вязкость плазмы уменьшается на 15%. Какова будет в этом случае величина СОЭ?

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2 по дисциплине «Физика биологических систем»

- 1. Физические модели сердечно-сосудистой системы. Работа и мощность сердца.
- 2. Электрический ток в различных средах. Действие постоянного электрического тока на живой организм.
- 3. Определить увеличение энтропии, обусловленное выделением тепла лошадью за один час, если удельная теплопродукция тела лошади равна 0,553 Дж/(кг·с), масса лошади 520 кг и температура тела 37,6 °C.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3 по дисциплине «Физика биологических систем»

- 1. Глаз как оптическая система.
- 2. Первое начало термодинамики для живых систем. Виды работ, совершаемые в организме.

3. Ястреб массы 400 г поднят воздушным потоком на высоту 70 м. Определить работу силы, поднявшей птицу.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4 по дисциплине «Физика биологических систем»

- 1. Пульсовая волна и её характеристики.
- 2. Тепловое излучение и его характеристики. Законы Стефана Больцмана, Вина. Фотоэффект. Биологическое действие оптических излучений.
- 3. Через сухожилие площадью 3 см² за 2 часа проходит 12,6 Дж теплоты. Толщина сухожилия 5 мм. Определить разность температур между внутренней и внешней частями сухожилия.

9.3.2. ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ ответов на вопросы экзамена

Результаты экзамена определяют оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» и объявляют в день экзамена.

Оценку «отлично» выставляют обучающемуся, глубоко и прочно освоившему теоретический и практический материал дисциплины. Ответ должен быть логичным, грамотным. Обучающемуся необходимо показать знание не только основного, но и дополнительного материала, быстро ориентироваться, отвечая на дополнительные вопросы. Обучающийся должен свободно справляться с поставленными задачами, правильно обосновывать принятые решения.

Оценку «хорошо» заслуживает обучающийся, твердо знающий программный материал дисциплины, грамотно и по существу излагающий его. Не допускает существенных неточностей при ответах на вопросы, правильно применяет теоретические положения при решении практических задач, владеет определенными навыками и приемами их выполнения.

Оценку «удовлетворительно» получает обучающийся, который имеет знания только основного материала, но не усвоил его детали, испытывает затруднения при решении практических задач. В ответах на поставленные вопросы обучающимся допущены неточности, даны недостаточно правильные формулировки, нарушена последовательность в изложении программного материала.

Оценка *«неудовлетворительно»* говорит о том, что обучающийся не знает значительной части материала по дисциплине, допускает существенные ошибки в ответах, не может решить практические задачи или решает их с затруднениями.

Выставление оценки осуществляется с учетом описания показателей, критериев и шкал оценивания компетенций по дисциплине, представленных в таблице 1.2

10. Информационное и методическое обеспечение учебного процесса по дисциплине

В соответствии с действующими государственными требованиями для реализации учебного процесса по дисциплине обеспечивающей кафедрой разрабатывается и постоянно совершенствуется учебно-методический комплекс (УМКД), соответствующий данной рабочей программе и прилагаемый к ней. При разработке УМКД кафедра руководствуется установленными университетом требованиями к его структуре, содержанию и оформлению. В состав УМКД входят перечисленные ниже и другие источники учебной и учебно-методической информации, средства наглядности.

Электронная версия актуального УМКД, адаптированная для обучающихся, выставляется в электронной информационно-образовательной среде университета.

ПЕРЕЧЕНЬ литературы, рекомендуемой для изучения дисциплины	
Автор, наименование, выходные данные	Доступ
1	2
Иванов, И. В. Основы физики и биофизики : учебное пособие / И. В. Иванов. — 2-е изд., испр., доп. — Санкт-Петербург : Лань, 2022. — 208 с. — ISBN 978-5-8114-1350-8. — Текст : электронный // Лань : электроннобиблиотечная система. — URL: https://e.lanbook.com/book/210917 — Режим доступа: для авториз. пользователей.	http://e.lanbook.com

Иванов, И. В. Сборник задач по курсу основы физики и биофизики : учебное пособие / И. В. Иванов. — 2-е изд., испр. — Санкт-Петербург : Лань, 2022. — 128 с. — ISBN 978-5-8114-1349-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/210920 — Режим доступа: для авториз. пользователей.	http://e.lanbook.com
Антонов, В. Ф. Физика и биофизика: учебник / В. Ф. Антонов, Е. К. Козлова, А. М. Черныш 2-е изд., испр. и доп Москва: ГЭОТАР-Медиа, 2015 472 с ISBN 978-5-9704-3526-7 Текст: электронный // ЭБС "Консультант студента": [сайт] URL: https://www.studentlibrary.ru/book/ISBN9785970435267.html - Режим доступа: по подписке.	http://www.studentlibrar y.ru
Грабовский, Р. И. Курс физики: учебное пособие для вузов / Р. И. Грабовский. – 13-е изд., стер. – Санкт-Петербург: Лань, 2022. – 608 с. – ISBN 978-5-8114-9073-8. – Текст: электронный // Лань: электроннобиблиотечная система. – URL: https://e.lanbook.com/book/184052. – Режим доступа: для авториз. пользователей.	http://e.lanbook.com
Биофизика. – Москва : Пущинский научный центр биологических исследований РАН ФИЦ, 1956. – . – Выходит 6 раз в год. – ISSN 0006-3029. – Текст : электронный. – URL: https://lib.rucont.ru/efd/493042/info.	РУКОНТ