формация о владельне: высшего образования олжность: Проректор по образовательной деятельности та подписания: 20.01.2025 07:08:03 Факультет Технического сервиса в АПК икальный праграммый ключ: Вы 42f5deae 4116bbfcbb9ac98	
МЕТОДИЧЕСКИЕ УКАЗАНИЯ	
по освоению учебной дисциппины	
_	
Б1.О.08 Химия	
Направленность (профиль) «Технический сервис в АПК»	
Обеспечивающая преподавание дисциплины кафедра - Математических и естественно дисциплин	онаучны

СОДЕРЖАНИЕ

Введение	3
1. Место учебной дисциплины в подготовке	4
2. Структура учебной работы, содержание и трудоёмкость основных элементов дисципли-	6
НЫ	0
2.1. Организационная структура, трудоемкость и план изучения дисциплины	6
2.2. Содержание дисциплины по разделам	6
3. Общие организационные требования к учебной работе обучающегося, условия допуска	7
к экзамену	•
3.1. Организация занятий и требования к учебной работе обучающегося	7
3.2. Условия допуска к экзамену по дисциплине	8
4. Лекционные занятия	8
5. Лабораторные занятия по курсу и подготовка обучающегося к ним	9
6. Общие методические рекомендации по изучению отдельных разделов дисциплины	10
7. Общие методические рекомендации по оформлению и выполнению отдельных видов	14
BAPC	14
7.1. Рекомендации выполнению индивидуального задания	14
7.1.1. Шкала и критерии оценивания	15
7.2. Рекомендации по самостоятельному изучению тем	15
7.2.1. Шкала и критерии оценивания	16
8. Текущий (внутрисеместровый) контроль хода и результатов учебной работы обучающе-	16
ГОСЯ	10
8.1. Образец билета для входного контроля	16
8.2. Текущий контроль успеваемости	18
8.2.1. Шкала и критерии оценивания	21
9. Промежуточная (семестровая) аттестация	22
9.1 Нормативная база проведения промежуточной аттестации по результатам изучения	22
дисциплины	22
9.2. Основные характеристики промежуточной аттестации по итогам изучения дисциплины	22
для экзамена	
9.3 Образец экзаменационного билета	23
10. Информационное и методическое обеспечение учебного процесса по дисциплине	24

ВВЕДЕНИЕ

- 1. Настоящее издание является основным организационно-методическим документом учебно-методического комплекса по дисциплине в составе основной профессиональной образовательной программы высшего образования (ОПОП ВО). Оно предназначено стать для них методической основой по освоению данной дисциплины.
- 2. Содержательной основой для разработки настоящих методических указаний послужила Рабочая программа дисциплины, утвержденная в установленном порядке.
- 3. Методические аспекты развиты в учебно-методической литературе и других разработках, входящих в состав УМК по данной дисциплине.
- 4. Доступ обучающихся к электронной версии Методических указаний по изучению дисциплины, обеспечен в информационно-образовательной среде университета.

При этом в электронную версию могут быть внесены текущие изменения и дополнения, направленные на повышение качества настоящих методических указаний.

Уважаемые обучающиеся!

Приступая к изучению новой для Вас учебной дисциплины, начните с вдумчивого прочтения разработанных для Вас кафедрой специальных методических указаний. Это поможет Вам вовремя понять и правильно оценить ее роль в Вашем образовании.

Ознакомившись с организационными требованиями кафедры по этой дисциплине и соизмерив с ними свои силы, Вы сможете сделать осознанный выбор собственной тактики и стратегии учебной деятельности, уберечь самих себя от неразумных решений по отношению к ней в начале семестра, а не тогда, когда уже станет поздно. Используя эти указания, Вы без дополнительных осложнений подойдете к промежуточной аттестации по этой дисциплине. Успешность аттестации зависит, прежде всего, от Вас. Ее залог – ритмичная, целенаправленная, вдумчивая учебная работа, в целях обеспечения которой и разработаны эти методические указания.

1. Место учебной дисциплины в подготовке выпускника

Учебная дисциплина относится к дисциплинам ОПОП университета, состав которых определяется вузом и требованиями ФГОС.

Цель дисциплины – Формирование у обучающихся

- знаний: о законах развития материального мира, о химической форме движения материи, о взаимосвязи строения и свойств вещества;
- химических умений как для решения научно-технических задач в профессиональной деятельности, так и для фундаментальной подготовки и самосовершенствования специалиста.

В ходе освоения дисциплины обучающийся должен:

иметь целостное представление об основных химических законах, процессах и явлениях; владеть: навыками выполнения основных химических лабораторных операций;

знать: фундаментальные разделы общей химии, в т.ч. химические системы, химическую термодинамику и кинетику, процессы коррозии и методы борьбы с ними, реакционную способность веществ, химическую идентификацию;

уметь: использовать знания в областях химии для освоения теоретических основ и практики при решении инженерных задач в сфере АПК.

1.1.Перечень компетенций с указанием этапов их формирования в результате освоения учебной дисциплины:

ной ди	сциплины:				
в фор	омпетенции, мировании кото- действована дис- циплина	Код и наиме- нование ин- дикатора дос-	формируемые	оненты компетенцю в рамках данной димый результат ее ос	исциплины
код	наименование	тижений ком- петенции	знать и понимать	уметь делать (действовать)	владеть навы- ками (иметь навыки)
	1		2	3	4
		Общепрофес	сиональные компете	нции	
ОПК-1	Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий	ИД-1 _{ОПК-1} Использует основные законы естественнонаучных дисциплин для решения стандартных задач в соответствии с направленностью профессиональной деятельности	- фундаментальные разделы общей хи- мии, в т.ч. хими- ческие системы, химическую термо- динамику и кинети- ку, процессы корро- зии и методы борь- бы с ними, реакци- онную способность веществ; химиче- скую идентифика- цию.	- использовать знания в областях химии для освоения теоретических основ и практики при решении инженерных задач в сфере АПК	- выполнения основных хи- мических лабо- раторных опе- раций.
		ИД-2 _{ОПК-1} Использует знание мате- матических методов для решения стан- дартных задач в соответствии с направлени- ем профессио- нальной дея- тельности	- основные определения, понятия, математические методы для решения стандартных задач в соответствии с направлением профессиональной деятельности	- использовать математические методы для решения типовых и проблемных задач в соответствии с направлением профессиональной деятельности	- проведения обработки результатов эксперимента современными методами

1.2. Описание показателей, критериев и шкал оценивания и этапов формирования компетенций в рамках дисциплины

			е показателей, критериев и шк			ванности компетенций	<u> </u>	
				компетенция не сфор- мирована	минимальный	средний	высокий	
				·	Оценки сформиро	ванности компетенций		
				2	3	4	5	
				Оценка «неудовле-	Оценка «удовлетво-	Оценка «хорошо»	Оценка «отлично»	
				творительно»	рительно»	,	,	Формы и
Индекс и	Код индикатора	Индика-		,	Характеристика сформ	ированности компетенции		средства
название	достижений	торы ком-	Показатель оценивания – зна-	Компетенция в полной	Сформированность	Сформированность ком-	Сформированность ком-	контроля
компетен-	компетенции	петенции	ния, умения, навыки (владения)	мере не сформирова-	компетенции соответ-	петенции в целом соот-	петенции полностью	формирова-
ции	Компетенции	потопции		на. Имеющихся знаний,	ствует минимальным	ветствует требованиям.	соответствует требова-	ния компе-
				умений и навыков не-	требованиям. Имею-	Имеющихся знаний, уме-	ниям. Имеющихся зна-	тенций
				достаточно для реше-	щихся знаний, умений,	ний, навыков и мотива-	ний, умений, навыков и	
				ния практических	навыков в целом дос-	ции в целом достаточно	мотивации в полной ме-	
				(профессиональных)	таточно для решения	для решения стандарт-	ре достаточно для реше-	
				задач	практических (профес-	ных практических (про-	ния сложных практиче-	
					сиональных) задач	фессиональных) задач	ских (профессиональных)	
							задач	
				Критерии оце	нивания			
		Полнота	Знает	Обучающийся не знает	Знает основные поня-	Свободно ориентируется	В совершенстве владеет	
		знаний	- фундаментальные разделы	значительной части	тия и формулы из раз-	в основных понятиях	понятийным аппаратом	
			общей химии, в т.ч. химические	фундаментальных	делов общей химии. В	фундаментальных раз-	фундаментальных раз-	
			системы, химическую термоди-	разделов общей химии;	ответах на вопросы	делов общей химии. При	делов общей химии. При	
			намику и кинетику, процессы	допускает существен-	есть неточности, ошиб-	решении задач допуска-	ответе все задания вы-	
			коррозии и методы борьбы с	ные ошибки в ответах	ки в решении задач.	ет малозначительные	полнены полностью,	
			ними, реакционную способность			неточности.	грамотно оформлены и	Рубежный
			веществ; химическую иденти-				не содержат ошибок.	контроль по
			фикацию.	05	06	06	05	разделам
		Наличие	Умеет	Обучающийся не умеет	Обучающийся испыты-	Обучающийся допускает	Обучающийся свободно	дисциплины;
		умений	- использовать знания в облас-	решать расчётные	вает затруднения при	малозначительные не-	справляется с постав-	Индивиду-
	ип 4		тях химии для освоения теоре-	задачи или применить	решении расчётных и	точности в решении за-	ленными задачами,	альное зада-
	ИД-1 _{ОПК-1}		тических основ и практики при решении инженерных задач в	теоретические знания к решению ситуацион-	ситуационных задач	дач	обосновывает принятые решения, показывая при	ние;
			сфере АПК	ных задач.			этом знания дополни-	Теоретиче-
ОПК-1			Сфере АТК	пых задач.			тельного материала.	ские вопросы
OTIK		Наличие	Владеет навыками	Не владеет навыками	Обучающийся владеет	Обучающийся владеет	Обучающийся владеет	экзаменаци-
		навыков	- выполнения основных химиче-	выполнения основных	навыками выполнения	навыками выполнения	навыками обработки	онного зада-
		(владение	ских лабораторных операций.	химических лаборатор-	основных лаборатор-	основных лабораторных	результатов эксперимен-	РИЯ
		опытом)	опиставораторным внорадин	ных операций.	ных операций (раство-	операций и использова-	та, сравнения их с дан-	
		,			рение, фильтрование,	ния лабораторного обо-	ными литературы и ин-	
					нагревание и т.д.)	рудования при проведе-	терпретации результатов	
					,	нии химических исследо-	химических исследова-	
						ваний;	ний	
	ИД-2 _{ОПК-1}	Полнота	Знает	Обучающийся не знает	Обучающийся знает	Свободно ориентируется	В совершенстве владеет	Рубежный
		знаний	- основные определения, поня-	значительной части	основные определе-	в основных определени-	основными определе-	контроль по
			тия, математические методы	основных определе-	ния, понятия, матема-	ях, понятиях, математи-	ниями, понятиями, мате-	разделам
			для решения стандартных задач	ний, понятий, матема-	тические методы для	ческих методах для	матическими методами	дисциплины;
			в соответствии с направлением	тических методов для	решения стандартных	решения стандартных	для решения стандарт-	Индивиду-
			профессиональной деятельно-	решения стандартных	задач в соответствии с	задач в соответствии с	ных задач в соответствии	альное зада-

		0714		ucence source species	uanannan madaa	0.110ED0DE01114014 ED04b00	111101
		СТИ	задач в соответствии с	направлением профес-	направлением профес-	с направлением профес-	_ ние;
			направлением профес-	сиональной деятель-	сиональной деятельно-	сиональной деятельно-	Теоретиче-
1			сиональной деятель-	ности	СТИ	сти	ские вопросы
			ности				экзаменаци-
	Наличие	Умеет	Обучающийся не умеет	Обучающийся испыты-	Обучающийся допускает	Обучающийся свободно	онного зада-
	умений	использовать математические	использовать матема-	вает затруднения в	малозначительные не-	справляется с решением	ния
		методы для решения типовых и	тические методы для	использовании мате-	точности в использова-	типовых и проблемных	
		проблемных задач в соответст-	решения типовых и	матических методов	нии математических ме-	задач в соответствии с	
		вии с направлением профессио-	проблемных задач в	для решения типовых	тодов для решения	направлением профес-	
		нальной деятельности	соответствии с направ-	и проблемных задач в	типовых и проблемных	сиональной деятельно-	
			лением профессио-	соответствии с направ-	задач в соответствии с	сти, обосновывает при-	
			нальной деятельности	лением профессио-	направлением профес-	нятые решения, показы-	
				нальной деятельности	сиональной деятельно-	вая при этом знания до-	
					СТИ	полнительного материа-	
						ла.	
	Наличие	Владеет навыками	Не владеет навыками	Обучающийся имеет	Владеет навыками про-	Обучающийся самостоя-	
	навыков	проведения обработки результа-	проведения обработки	навыки проведения	ведения обработки ре-	тельно проводит обра-	
1	(владение	тов эксперимента современными	результатов экспери-	обработки результатов	зультатов эксперимента	ботку результатов экспе-	
	опытом)	методами	мента современными	эксперимента совре-	современными методами	римента современными	
1			методами	менными методами		методами	

2. Структура учебной работы, содержание и трудоёмкость основных элементов дисциплины

2.1 Организационная структура, трудоемкость и план изучения дисциплины

	Трудоемкость, час				
Вид учебной работ	семестр, курс*				
вид учесной расст	очная	заочная форма			
	2 сем.	2 курс			
1. Аудиторные занятия, всего	40	8			
- лекции		20	4		
- практические занятия (включая семин	ары)	-			
- лабораторные работы		20	4		
2. Внеаудиторная академическая работа	l	32	91		
2.1 Фиксированные виды внеаудиторн					
работ:					
Выполнение и сдача/защита индивидуальн	юго/группового зада-				
ния в виде**					
- индивидуального задания (ИЗ-1)		10			
- контрольной работы (для студентов заоч	ной формы обучения)		40		
2.2 Самостоятельное изучение тем/вог	іросов программы	6	41		
2.3 Самоподготовка к аудиторным зан	мгиям	10	8		
2.4 Самоподготовка к участию и участи					
оценочных мероприятиях, проводимых		6	2		
троля освоения дисциплины (за исключе	нием учтённых в пп.	0	2		
2.1 – 2.2):					
3. Подготовка и сдача экзамена по итога	36	9			
лины		30	<u> </u>		
OFILIAS TRANSCONICO TI GROUND TO THE	Часы				
ОБЩАЯ трудоемкость дисциплины:	Зачетные единицы				

Примечание:

2.2. Укрупнённая содержательная структура учебной дисциплины и общая схема её реализации в учебном процессе

		Трудоемкость раздела и ее распределение по видам учебной работы, час.								ор- нти-
				<u>аосты,</u> ота	BAI	PC	СТИ	ф		
			7.	<u> </u>	заня				terc imo ioŭ ioŭ	ян . Ор
Номер и наименование раздела дисциплины. Укрупненные темы раздела			всего	лекции	практические (всех форм)	лабораторные	всего	Фиксированные виды	Формы текущего контроля успеваемости и промежуточной аттестации	№№ компетенций, на фор- мирование которых ориенти- рован раздел
		2	3	4	5	6	7	8	9	10
	Очная форма обучения									
	Строение вещества.	16	8	4	-	4	8		тест	ОПК-1
1	1.1 Строение атома. Состав атомных ядер.	8	4	2		2	4			
'	1.2 Химическая связь. Периодический закон и периодическая система Д.И.Менделеева.		4	2		2	4			
2	Классификация неорганических со- единений.	4	2	-	1	2	2		тест	ОПК-1
3	Основы термодинамики. Расчёты по термохимическим уравнениям.	8	4	2	-	2	4		тест	ОПК-1
4	Общие закономерности протекания химических реакций.	8	4	2	-	2	4		тест	ОПК-1
4	4.1. Химическая кинетика.	4	2	1	-	1	2			
	4.2. Химическое равновесие.	4	2	1	-	1	2			
	Растворы	12	8	4	-	4	4		тест	ОПК-1
5	5.1. Способы выражения концентрации растворов.	4	3	2	-	1	1			
	5.2. Коллигативные свойства растворов	3	2	1	-	1	1			
	5.3 Электролитическая диссоциация.	5	3	1	-	2	2			
6	Электрохимические процессы	24	14	8	-	6	10	10	ИЗ-1 тест	ОПК-1

^{* –} *семестр* – для очной и очно-заочной формы обучения, *курс* – для заочной формы обучения;
** – КР/КП, реферата/эссе/презентации, контрольной работы (для обучающихся заочной формы обучения), расчетнографической (расчетно-аналитической) работы и др.;

	6.1. Окислительно-восстановительные	10	4	2	_	2	2			
	реакции.	10	7							
	6,2. Гальванический элемент, принцип									
	его работы. ЭДС гальванического эле-	5	3	2		1	2			
	мента.									
	6,3. Электролиз растворов и расплавов.	5	3	2		1	3			
	6.4. Коррозия металлов. Принципы защи-	7	4	2		2	3			
	ты металлов и сплавов от коррозии.	•					3			
	Промежуточная аттестация	36	36	×	×	×	×	×	Экзамен	
	Итого по дисциплине	108	36	20		20	32			
			орма с	бучен	ия					
	Строение вещества.	10	-	-		-	10			ОПК-1
	1.1 Строение атома. Состав атомных									
1	ядер.									
' '	1.2 Химическая связь. Периодический									
	закон и периодическая система									
	Д.И.Менделеева.									
2	Классификация неорганических со-	5	_	_		_	5			ОПК-1
	единений.									
3	Основы термодинамики. Расчёты по	11	1	1		_	10			ОПК-1
3	термохимическим уравнениям.	• • •		•						
	Общие закономерности протекания	11	1	1		_	10			ОПК-1
4	химических реакций.	• • •	•	•			.0			
"	4.1. Химическая кинетика.									
	4.2. Химическое равновесие.									
	Растворы	10	-	-		-	10			ОПК-1
	5.1. Способы выражения концентрации									
5	растворов.									
	5.2. Коллигативные свойства растворов									
	5.3 Электролитическая диссоциация.									
	Электрохимические процессы	52	6	2		4	46			ОПК-1
	6.1. Окислительно-восстановительные	8	2	_		2	6			
	реакции.	0		_			0			
	6,2. Гальванический элемент, принцип									1
6	его работы. ЭДС гальванического эле-	11	1	1		-	10			1
	мента.									
	6,3. Электролиз растворов и расплавов.	15	-	-		-	15			
	6.4. Коррозия металлов. Принципы защи-	18	3	1		2	15			
	ты металлов и сплавов от коррозии.			1			13			
	Промежуточная аттестация Итого по дисциплине	9 108	9 9	× 4	×	× 4	× 91	×	Экзамен	

3. Общие организационные требования к учебной работе обучающегося

3.1. Организация занятий и требования к учебной работе обучающегося

Организация занятий по дисциплине носит циклический характер. По шести разделам предусмотрена взаимоувязанная цепочка учебных работ: лекция — самостоятельная работа обучающихся (аудиторная и внеаудиторная). На занятиях студенческая группа получает задания и рекомендации.

Для своевременной помощи обучающимся при изучении дисциплины кафедрой организуются индивидуальные и групповые консультации, устанавливается время приема выполненных работ.

Учитывая статус дисциплины к её изучению предъявляются следующие организационные требования:

- обязательное посещение обучающимся всех видов аудиторных занятий;
- ведение конспекта в ходе лекционных занятий;
- качественная самостоятельная подготовка к практическим занятиям, активная работа на них;
- активная, ритмичная самостоятельная аудиторная и внеаудиторная работа обучающегося в соответствии с планом-графиком, своевременная сдача преподавателю отчетных документов по аудиторным и внеаудиторным видам работ;
- в случае наличия пропущенных обучающимся занятиям, необходимо получить консультацию по подготовке и оформлению отдельных видов заданий.

Для успешного освоения дисциплины, обучающемуся предлагаются учебно-информационные источники в виде учебной, учебно-методической литературы по всем разделам.

3.2 Условия допуска к экзамену

Экзамен является формой контроля, который выставляется обучающемуся согласно «Положения о текущем контроле успеваемости, промежуточной аттестации обучающихся по программам высшего образования (бакалавриат, специалитет, магистратура) и среднего профессионального об-

разования в ФГБОУ ВО Омский ГАУ», выполнившему в полном объеме все перечисленные в п.2-3 требования к учебной работе, прошедший все виды тестирования, выполнения индивидуального задания с положительной оценкой. В случае не полного выполнения указанных условий по уважительной причине, обучающемуся могут быть предложены индивидуальные задания по пропущенному учебному материалу.

4. Лекционные занятия

Для изучающих дисциплину читаются лекции в соответствии с планом, представленным в таблице 3.

Таблица 3 - Лекционный курс

Lan	ion				таолица с	5 - Лекционный курс
a How		Тема лекции. Основные вопросы темы			кость по 1у, час.	Применяемые ин- терактивные фор-
раздела	пекции	Toma Youghn. Concential Bonpoos. Toms.	Заочная форма	мы обучения		
		Тема: Строение вещества				Лекция –
		1) Основные представления о строении атома. Кв механическая модель атома. Запрет Паули, прави да, Клечковского. Электронные формулы многоэле ных атомов		визуализация		
1	1-2	2) Основное и возбужденное состояние атома. Ме лентных связей. Основные типы химической связи теристики ковалентной связи. Гибридизация элект орбиталей.	ı. Харак-	4	-	
		1) Периодический закон и периодическая система тов Д.И.Менделеева				
		.2). Периодическое изменение свойств элементов единений	и их со-			
		Тема: Основы термодинамики. Расчёты по термох ским уравнениям.				Лекция – визуализация
3	3	 Термодинамическая система, термодинамическ тенциалы, функции. Изменение термодинамически ций при химических процессах. 		2	1	
		2) Первый и второй законы термодинамики.				
		Тема: Общие закономерности протекания химичес 1) Гомогенные и гетерогенные химические процесс				Лекция – визуализация
		рость и механизм реакций. Зависимость скорости	реакций			.,,
		от различных факторов. Закон действующих масс,				
4	4	станта скорости, кинетические уравнения, порядок		2	1	
		 Химическое равновесие как термодинамическое ние системы с постоянными функциями состояния 				
		ными скоростями противоположных процессов. Ко				
		химического равновесия, Принцип Ле-Шателье.				
		Тема: Растворы				Лекция с примене-
		1) Типы растворов, способы выражения их состав				нием техники об-
		рия растворения, движущие силы процесса раство				ратной связи.
		2) Свойства водных растворов электролитов. Теор электролитической диссоциации. Количественные				
5	5-6	теристики процесса диссоциации, зависимость от ных факторов.	•	4	-	
		3) Электролитическая диссоциация воды, ионное ведение воды, водородный (рН) и гидроксильный (•			
		показатели 4) Коллигативные свойства растворов				
		Тема: Электрохимические процессы				Лекция –
		1). Определение, термодинамика, методы уравни	1 Вания			визуализация
		уравнений окислительно-восстановительных реак				
		2.) Гальванический элемент, принцип его работы.	эдс			
6	7-9	гальванического элемента. 3). Электролиз растворов и расплавов. Законы Фа	арадея	8	2	
		Коррозия металлов. Принципы защиты металло сплавов от коррозии.				
		оплавов от коррозии.				
	I	общая трудоёмкость лекционн	ого курса	20	4	Х
Вс	его ле	кций по учебной дисциплине: час И	з них в инте	рактивно	й форме:	час
		- очная форма обучения 20			обучения	20
		- заочная форма обучения 4	- заочна	я форма	обучения	4

Примечания:

- материально-техническое обеспечение лекционного курса см. Приложение 6.
- обеспечение лекционного курса учебной, учебно-методической литературой и иными библиотечно-информационными ресурсами и средствами обеспечения образовательного процесса см. Приложения 1 и 2

5. Лабораторные занятия по дисциплине и подготовка к ним

Лабораторные занятия по курсу проводятся в соответствии с планом, представленным в таблице 4. Таблица 4 - Примерный тематический план лабораторных занятий по разделам учебной дисциплины

	1-		pribit remark teekkir tistar staceparepribix cars		1 1			
	Nº			Трудое ЛР,	мкость час	Связь	c BAPC	<u> </u>
раздела	ЛЗ*	*Ш	Тема лабораторной работы	очная форма	заочная форма	предусмотрена самоподготовка к занятию +/-	Защита отчета о ЛР во внеауди- торное время +/-	Применяемые инте- рактивные формы обучения
	1	1	1.1 Строение атома	2	-	+	1	
1	2	2	1.2 Химическая связь. Периодический закон и периодическая система Д.И.Менделеева.	2	-	+	•	
2	3	3	2.1 Способы получения, химические свойства оксидов, оснований, кислот и солей	2	-	+	-	Работа в малых группах
3	4	4	3.1 Энергетика химических реакций. Расчёты по термохимическим уравнениям	2	-	+	-	
4	5	5	4.1 Химическая кинетика. Химическое равновесие	2	-	+	-	Учебное портфолио
	6	6	5.1 Способы выражения концентрации растворов. Приготовление растворов из сухих солей и концентрированных растворов	1		+	-	
5	6	6	5.2 Коллигативные свойства растворов	1	-	+	-	Учебное портфолио
	7	7	5.3 Обменные реакции в растворах электролитов	2	-	+	-	
	8	8	6.1 Окислительно-восстановительные реак- ции	2	2	+	-	
6	9	9	6.2 Гальванические элементы	1		+	-	Работа в малых
	9	9	6.3 Электролиз.	1		+	-	группах
	10	10	6.4 Коррозия металлов.	2	2	+	ı	
Итог	о ЛР	10	Общая трудоёмкость ЛР	20	4		Х	

^{*} в т.ч. при использовании материалов МООК «Название», название ВУЗа-разработчика, название платформы и ссылка на курс (с указанием даты последнего обращения)

Примечания:

- материально-техническое обеспечение лабораторного практикума см. Приложение 6;
- обеспечение лабораторного практикума учебной, учебно-методической литературой и иными библиотечно-информационными ресурсами и средствами обеспечения образовательного процесса см. Приложения 1 и 2.

Подготовка обучающихся к лабораторным занятиям осуществляется с учетом общей структуры учебного процесса. На практических занятиях осуществляется входной и текущий аудиторный контроль в виде опроса, по основным понятиям дисциплины.

Подготовка к лабораторным занятиям подразумевает изучение темы лабораторного занятия, ориентируясь на вопросы для самоподготовки, оформление отчетного материала в виде отчёта о лабораторной работе.

Для осуществления работы по подготовке к занятиям, необходимо ознакомиться с методическими указаниями по дисциплине, внимательно ознакомиться с литературой и электронными ресурсами, с рекомендациями по подготовке, вопросами для самоконтроля.

6. Общие методические рекомендации по изучению отдельных разделов дисциплины

При изучении конкретного раздела дисциплины, из числа вынесенных на лекционные и практические занятия, обучающемуся следует учитывать изложенные ниже рекомендации. Обратите на них особое внимание при подготовке к аттестации.

Работа по теме, прежде всего, предполагает ее изучение по учебнику или пособию. Следует обратить внимание на то, что в любой теории, есть либо неубедительные, либо чересчур абстрактные, либо сомнительные положения. Поэтому необходимо вырабатывать самостоятельные суждения, дополняя их аргументацией, что и следует демонстрировать на лабораторно-практических занятиях. Для выработки самостоятельного суждения важным является умение работать с научной литературой. Поэтому работа по теме кроме ее изучения по учебнику, пособию предполагает также поиск по теме научных статей в научных журналах. Выбор статьи, относящейся к теме, лучше делать по последним в году номерам, где приводится перечень статей, опубликованных за год.

При изучении раздела «Основы термодинамики. Расчёты по термохимическим уравнениям», обучающемуся требуется освоить материалы массового открытого онлайн-курса «Физическая химия. Термодинамика» (Открытое образование, https://openedu.ru/course/misis/CHTHER/, НИТУ «МИСиС»)

При изучении раздела «Общие закономерности протекания химических реакций», обучающемуся требуется освоить материалы массового открытого онлайн-курса «Физическая химия. Кинетика» (Открытое образование, https://openedu.ru/course/misis/CHKIN/, HИТУ «МИСиС»)

Самостоятельная подготовка предполагает использование ряда методов.

1. Конспектирование. Конспектирование позволяет выделить главное в изучаемом материале и выразить свое отношение к рассматриваемой автором проблеме.

Техника записей в конспекте индивидуальна, но есть ряд правил, которые могут принести пользу его составителю: начиная конспект, следует записать автора изучаемого произведения, его название, источник, где оно опубликовано, год издания. Порядок конспектирования:

- а) внимательное чтение текста;
- б) поиск в тексте ответов на поставленные в изучаемой теме вопросы;
- в) краткое, но четкое и понятное изложение текста;
- г) выделение в записи наиболее значимых мест;
- д) запись на полях возникающих вопросов, понятий, категорий и своих мыслей.
- 2. Записи в форме тезисов, планов, аннотаций, формулировок определений. Все перечисленные формы помогают быстрой ориентации в подготовленном материале, подборе аргументов в пользу или против какого- либо утверждения.
- 3. Словарь понятий и категорий. Составление словаря помогает быстрее осваивать новые понятия и категории, увереннее ими оперировать. Подобный словарь следует вести четко, разборчиво, чтобы удобно было им пользоваться. Из приведенного в УМК глоссария нужно к каждому занятию выбирать понятия, относящиеся к изучаемой теме, объединять их логической схемой в соответствии с вопросами занятия.

ВОПРОСЫ для самоподготовки к лабораторным занятиям

Лабораторное занятие 1. СТРОЕНИЕ АТОМА

Краткое содержание

Атомно-молекулярное учение. Современные представления о строении атомов. Основные положения и понятия квантовой теории. Корпускулярно-волновой дуализм элементарных частиц. Квантово-механическая модель атома водорода. Квантовые числа. s-, p-, d-, f – элементы. Электронные конфигурации атомов. Принцип минимальной энергии. Принцип Паули. Правило Хунда. Правила Клечковского.

Свойства атомов. Атомный радиус. Потенциал ионизации. Сродство к электрону. Электроотрицательность. Природа химической связи. Перераспределение электронов при образовании связи.

Вопросы для самоконтроля по теме:

- 1. Основные экспериментальные данные, доказывающие современное представление о теории строения атома.
- 2. Квантовая характеристика излучения и поглощения энергии. Уравнение Планка.
- 3. Строение электронной оболочки атома по Бору.
- 4. Ядро атома и его состав. Изотопы. Изобары.
- 5. Принцип неопределённости Гейзенберга.
- 6. В чём сущность квантовых чисел n, l, m_l и s?
- 7. Принцип несовместимости Паули.
- 8. Максимальная ёмкость электронов на уровне и подуровне.
- 9. Принцип наименьшей энергии. Правило Клечковского.
- 10. Правило Гунда (Хунда).

Лабораторное занятие 2. ХИМИЧЕСКАЯ СВЯЗЬ. ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА.

Краткое содержание

Ковалентная связь. Метод валентных связей. Гибридизация атомных орбиталей. Кратность связи. Типы связей. Энергия ковалентной связи. Насыщенность связи. Направленность. Взаимодействие электронных орбиталей. Полярность и поляризуемость связи. Донорно-акцепторная связь. Ионная связь. Энергия и свойства связи. Металлическая связь. Энергия и свойства связи. Межмолекулярные взаимодействия. Водородная связь.

Закон Д.И. Менделеева и его современная формулировка. Природа периодичности в изменении свойств элементов.

Периодическая система элементов, её структура. Изменение строения и свойств элементов в периоде, группе. Потенциал ионизации. Сродство к электрону. Электроотрицательность.

Периодический характер изменения свойств соединений.

Вопросы для самоконтроля по теме:

- 1. Основные положения теорий ковалентной химической связи и молекулярных орбиталей.
- 2. Какие связи называются полярными, неполярными?
- 3. В чём суть донорно-акцепторного механизма образования ковалентной связи?
- 4. Ионная связь. Её отличия от ковалентной.
- 5. Особенности водородной связи. Роль водородной связи в биополимерах (белки, крахмал).
- 6. Какая связь называется металлической? Её особенности.
- 7. Структура периодической системы Менделеева (периоды, ряды, группы, подгруппы).
- 8. Закономерности изменения свойств элементов в зависимости от положения в ПСХЭ.
- 9. Как по электронной формуле элемента определить, к какому семейству, к какой группе и подгруппе он принадлежит?

Лабораторное занятие 3. ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ. СПОСОБЫ ПОЛУЧЕНИЯ, ХИМИЧЕСКИЕ СВОЙСТВА

Краткое содержание

- 1. Оксиды. Определение, номенклатура, способы получения, химические свойства.
- 2. Основания. Определение, номенклатура, способы получения, химические свойства.
- 3. Кислоты. Определение, номенклатура, способы получения, химические свойства.
- 4. Соли. Определение, номенклатура, способы получения, химические свойства.
- 5. Взаимосвязь между классами неорганических соединений.

Лабораторное занятие 4. ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ. РАСЧЕТЫ ПО ТЕРМОХИМИЧЕСКИМ УРАВНЕНИЯМ.

Краткое содержание

Основные понятия химической термодинамики. Функция состояния. Внутренняя энергия. Первое начало термодинамики и его следствия. Энтальпия. Закон Гесса. Тепловые эффекты реакций. Термохимические уравнения.

Энтропия. Микро- и макросостояния вещества. Изменение энтропии и самопроизвольное протекание процессов. Второе и третье начало термодинамики.

Свободные энергии Гиббса и Гельмгольца. Критерий самопроизвольного протекания процесса. Энтальпийный и энтропийный факторы. Термодинамическая устойчивость химических соединений. Физико-химические предпосылки переноса вещества и энергии.

Вопросы для самоконтроля по теме:

- 1. Математическая формулировка первого начала термодинамики.
- 2. Дайте определения понятий «энтальпия», «энтропия» и «изобарно-изотермический потенциал». В каком соотношении находятся эти величины?
- 3. Каковы термодинамические условия для наступления равновесного состояния системы?
- 4. Закон Гесса и следствия из него.
- 5. Как рассчитать теплотворную способность твёрдого и газообразного топлива?

Лабораторное занятие 5. ХИМИЧЕСКАЯ КИНЕТИКА. ХИМИЧЕСКОЕ РАВНОВЕСИЕ.

Краткое содержание

Скорость химической реакции. Закон действующих масс (кинетический). Константа скорости реакции. Влияние температуры на скорость реакции. Правило Вант-Гоффа. Энергия активации и путь реакции. Уравнение Аррениуса.

Каталитические реакции и катализаторы. Гомогенный и гетерогенный катализ. Ферментативный катализ. Механизм катализа.

Условие равновесия. Закон действующих масс (термодинамический). Свободная энергия Гиббса и константа равновесия. Свойства химического равновесия. Влияние различных факторов на равновесие. Принцип Ле-Шателье.

Вопросы для самоконтроля по теме:

- 1. Какие факторы влияют на скорость химической реакции? Сформулируйте закон действия масс.
- 2. Что характеризует константа скорости химической реакции, константа равновесия?
- 3. Как практически довести обратимую реакцию до конца?
- 4. Приведите формулу, по которой можно вычислить температуру наступления равновесия по термодинамическим данным.

Лабораторное занятие 6. СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИИ РАСТВОРОВ. ПРИГОТОВЛЕНИЕ РАСТВОРОВ ИЗ СУХИХ СОЛЕЙ И КОНЦЕНТРИРОВАННЫХ РАСТВОРОВ. КОЛЛИГАТИВНЫЕ СВОЙСТВА РАСТВОРОВ

Краткое содержание

Растворы. Концентрация растворов и способы её выражения. Растворимость. Механизм образования растворов. Сольваты. Гидраты.

Тепловой эффект растворения. Растворение твёрдых веществ и газов.

Закон Генри. Первый закон Рауля. Температуры кипения и кристаллизации растворов. Второй закон Рауля. Эбулиоскопия. Криоскопия.

Диффузия и осмос. Осмотическое давление растворов. Уравнение Вант-Гоффа. Биологическое значение осмотического давления.

Вопросы для самоконтроля по теме:

- 1. Приведите характеристику наиболее употребимых в химической практике способов выражения концентрации растворов.
- 2. Пересчёт концентраций из одного вида в другой (массовой доли, молярной, нормальной, моляльной).
- 3. Что называется осмотическим давлением?
- 4. Почему растворы кипят при более высокой и замерзают при более низкой температуре, чем чистые растворители?
- 5. Что называется криоскопической и эбулиоскопической константами растворителя?

Лабораторное занятие 7. ОНООБМЕННЫЕ РЕАКЦИИ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ

Краткое содержание

Теория электролитической диссоциации Аррениуса. Свойства растворов электролитов. Сильные электролиты. Активность. Ионная сила раствора.

Слабые электролиты. Степень и константа диссоциации, влияние на них различных факторов. Закон разбавления Оствальда. Диссоциация воды. Ионное произведение воды. Водородный показатель. Роль концентрации водородных ионов в биологических процессах.

Гидролиз солей. Степень и константа гидролиза, их связь, влияние на них различных факторов.

Вопросы для самоконтроля по теме:

- 1. Что такое электролитическая диссоциация? Какова роль растворителя в этом процессе?
- 2. Что называется степенью электролитической диссоциации? Как зависит степень диссоциации от концентрации раствора?
- 3. Какие гидроксиды называют амфотерными?

- 4. Что такое константа диссоциации? Каков взаимосвязь между степенью и константой диссоциации?
- 5. Что такое рН? Какими величинами рН характеризуются кислая, щелочная и нейтральная среды?
- 6. Что называется гидролизом?

Лабораторное занятие 8. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

Краткое содержание

Электронная теория окислительно-восстановительных реакций. Важнейшие окислители и восстановители, их положение в периодической системе. Окислительно-восстановительное равновесие. Сопряжённые редокс-системы.

Стандартный окислительно-восстановительный (электродный) потенциал. Уравнение Нернста. Электродвижущая сила и направление протекания окислительно-восстановительной реакции. Гальванический элемент. Ряд напряжений металлов.

Влияние среды и внешних условий на направление окислительно-восстановительной реакции и характер продуктов.

Вопросы для самоконтроля по теме:

- 1. Какие химические реакции относятся к окислительно-восстановительным?
- 2. Окислители (акцепторы электронов) и восстановители (доноры электронов).
- 3. Окислительные и восстановительные свойства простых веществ и химических соединений, влияние степени окисления электронноактивных частиц.
- 4. Классификация редокс-реакций.
- 5. Составление химических окислительно-восстановительных уравнений на основе баланса электронов.

Лабораторное занятие 9. ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ. ЭЛЕКТРОЛИЗ.

Краткое содержание

Электродные потенциалы металлов и факторы, влияющие на их величину. Понятие о стандартных потенциалах, водородный электрод сравнения. Гальванические элементы. ЭДС гальванического элемента. Ряд напряжений металлов. Уравнение Нернста. Явление поляризации электродов.

Электролиз расплавов. Катодные и анодные процессы при электролизе водных растворов. Последовательность разрядки ионов при электролизе. Законы Фарадея. Электролитический эквивалент. Выход по току. Электролиз с растворимым и нерастворимым анодом. Применение электролиза.

Вопросы для самоконтроля по теме:

- 1. Что называется электродом, электродным потенциалом? В каком случае электрод и потенциал называют стандартным?
- 2. От каких факторов зависит величина электродного потенциала? Подтвердить эту зависимость уравнением Нернста.
- 3. Что называется гальваническим элементом?
- 4. Какой электрод выполняет в гальваническом элементе функцию анода, катода?
- 5. Как вычисляется ЭДС гальванического элемента?
- 6. Как связаны между собой положение металла в ряду напряжений и химическая активность металла?
- 7. Что называется электролизом? Что является окислителем и восстановителем при электролизе?
- 8. Чем отличаются процессы, протекающие при электролизе, от процессов в гальваническом элементе?
- 9. В чём различие электролиза расплавов от электролиза растворов электролитов?
- 10. Что называется потенциалом разложения электролита, перенапряжением электродного процесса, теоретическим потенциалом разложения?
- 11. Математическое выражение зщакона Фарадея.
- 12. Что называется выходом по току?
- 13. Важнейшие области практического применения электролиза.
- 14. Привести уравнения электрохимических реакций, протекающих при зарядке и разрядке свинцового аккумулятора.

Лабораторное занятие 10. КОРРОЗИЯ МЕТАЛЛОВ

Краткое содержание

Сущность, виды коррозийных процессов. Химическая и электрохимическая коррозия. Деполяризаторы. Запись уравнений реакций, протекающих при коррозии в различных средах. Коррозийный потенциал. Основные методы защиты от коррозии: легирование, ингибирование, покрытие, электрохимические методы.

Вопросы для самоконтроля по теме:

- 1. Химическая коррозия. В каком случае она является полезной? Какие факторы способствуют протеканию химической коррозии?
- 2. Что такое оксидная плёнка? Пассивирование?
- 3. Электрохимическая коррозия, её отличие от химической коррозии. В каком случае она называется контактной коррозией, микрогальванокоррозией, электрокоррозией?
- 4. Какие факторы способствуют электрохимической коррозии?
- 5. Что называется коррозионным гальваническим элементом?
- 6. Важнейшие способы защиты металлов от коррозии. В чём сущность каждого из них?

Процедура оценивания Шкала и критерии оценивания самоподготовки по темам лабораторных занятий

- оценка «зачтено» выставляется, если студент изучил тему лабораторного занятия, ориентируясь на вопросы для самоподготовки, оформил отчетный материал в виде отчёта о лабораторной работе, смог выполнить необходимые расчёты и сделать выводы.
- оценка «*не зачтено*» выставляется, если студент неаккуратно оформил отчетный материал в виде отчёта о лабораторной работе, не смог выполнить необходимые расчёты и сделать выводы.

7. Общие методические рекомендации по оформлению и выполнению отдельных видов ВАРС

7.1. Рекомендации по выполнению индивидуального задания

Учебные цели, на достижение которых ориентировано выполнение индивидуального задания: закрепить и углубить знания, полученные на аудиторных занятиях, научиться решать ситуационные задачи, определить конечный результат в обучении по данной теме или разделу.

Учебные задачи, которые должны быть решены студентом в рамках выполнения индивидуального задания:

- систематизация знаний, формирование и отработка навыков химического исследования, накопление опыта работы с учебной и научной литературой;
- совершенствование в изложении своих мыслей, самостоятельного построения структуры работы, постановки задач, раскрытие основных вопросов, умение сформулировать логические выводы и предложения.

При выполнении индивидуального задания студенты могут использовать любые учебные пособия, консультации с преподавателем. Каждому студенту дается свой вариант работы. Работа выполняется в отдельной (не рабочей) тетради для индивидуальных работ. Выполненная работа в установленный срок передаётся на кафедру преподавателю для проверки. Преподаватель проверяет ее и делает соответствующую отметку: «зачтено» или «не зачтено». Если работа не зачтена, то она передается студенту для доработки. Доработанный вариант работы вновь направляется на проверку преподавателю.

ОБРАЗЕЦ

Варианта индивидуального задания

1. Подобрать коэффициенты в уравнения окислительно-восстановительных реакций методом электронного баланса, указать окислитель и восстановитель.

Вариант	Уравнения реакций
1	$KMnO_4 + KOH \rightarrow K_2MnO_4 + O_2 + H_2O$
	$HCIO_4 + SO_2 \rightarrow HCI + H_2SO_4$

2. Определить э.д.с. химического гальванического элемента и концентрационного гальванического элемента. В каком направлении будут перемещаться электроны во внешней цепи при работе этих элементов?

Вариант		Гальванический элемент
1	химический	Cd / CdCl ₂ (0,1M) // ZnSO ₄ (0,01M) / Zn

концентрационный	Cd /Cd(NO ₃) ₂ (0,1M) // Cd(NO ₃) ₂ (0,01M) Cd/Cd

3 Какие продукты и в каком количестве образуются при электролизе раствора на катоде по данным, приведенным в таблице, анод нерастворимый.

Вариант	Вещество	Сила тока, А	Время, ч
1	Нитрат алюминия	4	2

4. Определить тип покрытия (анодное или катодное), написать процесс коррозии в кислой и нейтральной средах.

 mpanisher opedar.											
Populati	Основной мотопп	Металль	і покрытий								
Вариант	Основной металл	первый	второй								
1	Железо	Медь	Цинк								

5. Написать уравнения реакций, протекающих при растворении указанных металлов в соляной, серной концентрированной, азотной разбавленной кислотах. Уравнения уравнять методом электронного баланса

٠,		
	Вариант	Металлы
	1	Aa . Ma

7.1.1. Шкала и критерии оценивания

- оценка «зачтено» выставляется, если студент выполнил более 60% задания.
- оценка «не зачтено» выставляется, если студент ответил менее 60% вопросов задания.

7.2. Рекомендации по самостоятельному изучению тем

ВОПРОСЫ для самостоятельного изучения

Тема: «Дисперсные системы. Коллоиды и коллоидные растворы»

- 1). Дисперсные системы, их классификация по степени дисперсности и по агрегатному состоянию.
- 2). Природа коллоидного состояния. Методы получения коллоидных растворов.
- 3). Методы очистки коллоидных растворов.
- 4). Молекулярно-кинетические свойства коллоидных систем (броуновское движение, диффузия, осмотическое давление).
- 5). Механизм образования и строение мицеллы. Причины устойчивости золей.
- 6). Электрокинетические явления: электрофорез и электроосмос.
- 7). Коагуляция золей. Виды устойчивости золей. Факторы устойчивости.
- 8). Влияние электролитов на устойчивость золей. Порог коагуляции. Правило Шульце-Гарди.
- 9). Коагуляция коллоидов смесями электролитов. Взаимная коагуляция золей.

Тема: «Жесткость воды и способы ее устранения»

- 1). Чем обусловлена жёсткость воды?
- 2). Какие виды жёсткости воды различают?
- 3). Присутствием каких соединений обусловлена временная жёсткость?
- 4). Присутствием каких соединений обусловлена постоянная жёсткость воды?
- 5). Какими способами устраняют временную жёсткость?
- 6). Какими способами устраняют постоянную жёсткость?
- 7). Для устранения жёсткости воды иногда применяют ортофосфат натрия. На чём основано применение этой соли? Ответ подтвердите, составив соответствующие уравнения реакций.

Тема: «Химические источники тока. Аккумуляторы разных типов. Топливные элементы»

- 1). Химические источники тока и их применение
- 2). Устройство и принцип работы химических источников тока.
- 3). Принцип действия топливного элемента (ТЭ). Электроды в ТЭ. Катализаторы ТЭ.
- 4). Поляризация электродов
- 5). Электрохимические генераторы
- 6). Классификация ТЭ
- 7). Другие типы ТЭ
- 8). Применение химических источников тока в сельскохозяйственном производстве.

Общий алгоритм самостоятельного изучения темы

- 1) Ознакомиться с рекомендованной учебной литературой и электронными ресурсами по теме (ориентируясь на вопросы для самоконтроля).
- 2) На этой основе составить развёрнутый план изложения темы

- 3) Выбрать форму отчетности конспектов(план конспект, текстуальный конспект, свободный конспект, конспект схема)
- 4) Оформить отчётный материал в установленной форме в соответствии методическими рекомендациями
- 5) Провести самоконтроль освоения темы по вопросам, выданным преподавателем
- 6) Предоставить отчётный материал преподавателю по согласованию с ведущим преподавателем
- 7) Подготовиться к предусмотренному контрольно-оценочному мероприятию по результатам самостоятельного изучения темы
- 8) Принять участие в указанном мероприятии, пройти рубежное тестирование по разделу на аудиторном занятии и заключительное тестирование в установленное для внеаудиторной работы время

7.2.1 ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ самостоятельного изучения темы

- оценка «*зачтено*» выставляется, если обучающийся оформил отчетный материал в виде доклада на основе самостоятельного изученного материала, смог всесторонне раскрыть теоретическое содержание темы.
- оценка «*не зачтено*» выставляется, если обучающийся неаккуратно оформил отчетный материал в виде доклада на основе самостоятельного изученного материала, не смог всесторонне раскрыть теоретическое содержание темы.

8. Входной контроль и текущий (внутрисеместровый) контроль хода и результатов учебной работы

Входной контроль проводится в рамках лабораторных занятий с целью выявления реальной готовности студентов к освоению данной дисциплины за счет знаний, умений и компетенций, сформированных в курсе химии, изучаемом в средней школе. Входной контроль проводится в форме тестирования.

	8.1 ОБРАЗЕЦ БИЛЕТА							
	для провед	ени	я вхо	дно	го контроля			
1)	Химической реакцией является плавление металлов сжижение воздуха			3) 4)	горение природного газа замерзание воды			
1)	Элемент, для которого существует только фосфор кислород	од	3)	бро				
1)	Относительная молекулярная масса буде Na_3PO_4 H_3PO_4	т на	3)	ьше Li₃F K₃F	PO_4			
4. 1) 2)	Укажите в ответах правильную электронн $1s^2\ 2s^2\ 3s^2\ 3p^6\ 3d^6\ 4s^1$ $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^1$	ую (форму 3) 4)	⁄лу 3 1s² 1s²	элемента с порядковым номером 19. 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 2s ² 2p ⁶ 3s ² 3p ² 3d ⁴ 4s ¹			
1)	Электронную конфигурацию 1s ² 2s ² 2p ⁶ 3s ² 3 молибдена хрома	3p ⁶ 4	4s ¹ 3d ⁵ 3) 4)	име кал ме <i>р</i>	ия			
1)	Каким веществом надо подействовать на Cl_2 HCI	жел	3)	тоб Zn(KCI				
1)	Вещество, молекулярная формула которо формальдегид хлороформ	ого (3)	бро	четырех атомов, - это мид лития рид углерода(IV)			
1)	Если оксид растворяется в воде, то это основный оксид это кислотный оксид	4)	на ос	нов	отерный оксид ании этих данных нельзя сделать вывод сновных свойствах оксида			

1)	Химическая реакция возможна между Cu и HCl Fe и Na₃PO₄		Ag и Mg(NO ₃) ₂ Zn и FeCl ₂						
9.	Четыре ковалентные связи содержит молекула	а							
,	CO_2 C_2H_4		C_2H_6 C_3H_4						
	. Кристалл алмаза состоит из двухатомных молекул		3) положительных и отрицательных ионов углерода						
	положительных ионов углерода С ⁴⁺ , соедине х с помощью электронного газа	H-	4) атомов углерода, соединенных ковалентными связями						
	11. В какой системе увеличение давления смещает химическое равновесие в сторону продуктов ре- акции?								
	$\begin{array}{c} 2SO_{2(r)} + O_{2(r)} \leftrightarrow 2SO_{3(r)} \\ N_{2(r)} + O_{2(r)} \ \leftrightarrow \ 2NO_{(r)} \end{array}$		$CO_{2(r)} + 2C_{(TB.)} \leftrightarrow 2CO_{(r)} $ $2NH_{3(r)} \leftrightarrow N_{2(r)} + 3H_{2(r)}$						
	При обычных условиях с наименьшей скорост Fe и O ₂		ротекает реакция между Na и О $_2$						
	CaCO ₃ и HCl(p-p)		$Na_2SO_4^{-}(p-p)$ и $BaCl_2(p-p)$						
1)	Реакция, уравнение которой $CaCO_{3(\kappa)} \to CaC$ соединения, экзотермическим разложения, эндотермическим	3)	$CO_{2 (r)} - Q$, относится к реакциям соединения, эндотермическим разложения, экзотермическим						
1)	В качестве катионов только ионы Н ⁺ образуют NaOH	3)	H_2SO_4						
2)	NaH ₂ PO ₄	4)	NaHSO ₄						
1)	2	3)	n Na₂HPO₄ = сумма коэффициентов равна						
2)	3	4)	8						
pa	створа, равна		ть 50 г хлорида калия для получения 10%-ного						
1) 2)		3) 4)	500 4500						
	ав реагирующих веществ, называют	нием	тепени окисления элементов, входящих в со-						
1) 2)		3) 4)	термохимическими окислительно-восстановительными						
18 1)	. Общая сумма коэффициентов в уравнении р 4 2) 5	еакц 3)							
	. Окислителем в реакции $P + KCIO_3 = P_2O_5 + P_2O_5$								
1)	P 2) KCI	3)	P_2O_5 4) $KCIO_3$						
1)		3) C	етствует уравнение ${ m CuO} + 2{ m HcI} ightarrow { m CuCl}_2 + { m H}_2{ m O}$ ${ m CaO}_3 ightarrow { m CaO} + { m CO}_2$						

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ ответов на вопросы входного контроля

- оценка «отлично» выставляется обучающемуся, если получено более 81% правильных ответов.
- оценка «хорошо» получено от 71 до 80% правильных ответов.
- оценка «удовлетворительно» получено от 61 до 70% правильных ответов.
- оценка «неудовлетворительно» получено менее 61% правильных ответов.

8.2. Текущий контроль успеваемости

В течение семестра, проводится текущий контроль успеваемости по дисциплине, к которому обучающийся должен быть подготовлен.

Отсутствие пропусков аудиторных занятий, активная работа на практических занятиях, общее выполнение графика учебной работы являются основанием для получения положительной оценки по текущему контролю.

В качестве текущего контроля может быть использован тестовый контроль. Тест состоит из небольшого количества элементарных вопросов по основным разделам дисциплины: неправильные решения разбираются на следующем занятии; частота тестирования определяется преподавателем.

Образец билета по теме «Классификация неорганических соединений»

	•			•	•		
1)	Амфотерным и основ FeO и SO ₂ Al_2O_3 и K_2O	вным	і оксидами соответ	3)	о являются: ZnO и NO Fe ₂ O ₃ и CO		
1)	Гидроксид калия буд NaOH, H_2SO_4 , K_2O $Zn(OH)_2$, $Cu(SO)_4$, H_2O		заимодействовать	3)	ым веществом $NO_2,\ Al(OH)_3,\ HNO_3,\ Ba(OH)$	HCI	:
3. 1)	Сколько кислотных о	остат 2)		кислоті		4)	4
1)	Как называется соль диацетат гидроалюю дигидроацетат алюю	инии	Я	,	ацетат гидрок ацетат дигидр		
1)	Указать тип данной с кислая средняя	ипо	[Ni(OH)] ₂ SO ₄	3) 4)	двойная основная		
	Из перечисленных к SO_3		тных оксидов не р С1 ₂ О ₇		т с водой P ₂ O ₅	4)	SiO ₂
	При нагревании окси Fe		елеза (II) с оксидо FeO		ода (II) образу⊦ Fe₂O₃	-	ислый газ и Fe ₃ O ₄
	Какое вещество надо HNO ₃		бавить к нитрату г Mg(OH) ₂		магния, чтобы MgO		ъ его в нитрат магния? NaNO ₃
		Обр	азец билета по те	еме «Ос	сновы термод	инамики»	
1.	Неверно, что соглас	но вт	орому началу тері	модинаг	мики		
1)	КПД тепловой маши	ІНЫ В	сегда меньше еди	ницы (1	00%)		
2)	тепловой эффект об	Σратн	юй реакции больш	іе тепло	вого эффекта	прямой ре	акции
	в изолированной си тропии	стем	е самопроизвольн	о идут п	роцессы, сопр	овождающ	иеся увеличением
	теплота самопроизво	эльн	о переходит от бол	іее нагр	етого тела к ме	енее нагре	гому
1)	В каком ряду газообр НБ, НСІ, НВг, НІ НІ, НБ, НСІ, НВг	азнь	не галогеноводоро,		юложены в пор HCI, HF, HBr HI, HBr, HCI,	, HI	астания их стойкости?

дел 1)	По термохимическому уравнению 2Cu + O ₂ = 2 пяющейся в результате окисления 16 г меди. 38,75 кДж 77,5 кДж	3)) + 310 кДж вычислите 1240 кДж 2480 кДж	кол	пичество теплоты, вы-			
	4. Чему равна стандартная энтальпия образования H_2S (г), если известен тепловой эффект реакции его горения: $2H_2S_{(r)} + 3O_{2(r)} = 2SO_{2(r)} + 2H_2O_{(r)}; \ \Delta H^0 = -1038кДж?$							
,	-499 кДж -20 кДж	3)	₋₄₀ кДж -1058 кДж					
3S(1) 2)	$\Delta H x.p = \Delta H^{obp.} Al_2 O_3 - 3\Delta H^{obp.} SO_3 - \Delta H^{obp.} Al_2$ $\Delta H x.p = \Delta H^{obp.} Al_2 (SO_4)_3 - \Delta H^{obp.} Al_2 O_3 - 3\Delta H^{obp.}$	^{06p.} S (SO: ^{06p.} S	O ₃ 4)3 SO ₃	тьпі	ии процесса Al ₂ O ₃ +			
	Образец билета по теме «Общие законом	иерн	ности протекания хим	ич	еских реакций»			
	При увеличении общего давления в 2 раза скор О₂ увеличится в раз(а).	ОСТЬ	ь элементарной газово	йр	еакции 2NO + O ₂ =			
1)		3)	6	4)	8			
	Если при увеличении температуры от 20 до 40°	Сск	орость реакции возро	сла	в 9 раз, то значение			
тем 1)	ипературного коэффициента реакции равно 2 2) 3	3)	6	4)	9			
сер 1)	Для смещения равновесия в системе H ₂₍ г) + S(т роводорода необходимо понизить температуру ввести катализатор	ъ) ← 3) 4)	→ $H_2S(\Gamma)$, $\Delta H_{\Gamma}^{\ 0}$ = -21 кД; понизить давление повысить давление	ΚВ	сторону образования			
4.	Какой физический смысл константы скорости р	еакц	ции?					
1)	величина, характеризующая реакционную спос	собн	ость веществ при дан	ной	концентрации;			
2)	равна скорости реакции, если концентрация ка	ждс	ого из реагирующих ве	щес	ств равна 1 моль/л;			
3)	равна скорости реакции, если концентрации ре	еаги	рующих веществ равн	Ы М	ежду собой;			
4)	равна скорости реакции, если произведение ко	нце	нтраций реагирующих	веі	цеств равно единице.			
1)	Изменение давления не влияет на смещение ра $C(\tau)$ + $CO_2(\tau)$ \leftrightarrow $2CO(\tau)$ $CO_2(\tau)$ + $H_2(\tau)$ \leftrightarrow $CO(\tau)$ + $H_2O(\tau)$	авно	ВВЕСИЯ В СИСТЕМЕ 3) $CO(r) + 2 H_2(r) \leftarrow$ 4) $CO(r) + Cl_2(r) \leftarrow$					
вес	Для системы, находящейся при постоянных да сия является							
1)	$\Delta G_r < 0$ 2) $\Delta H_r < 0$	3)	$\Delta H_r = 0$	4)	$\Delta G_r = 0$			
	Какое из приведенных выражений соответствуе $SCO_{(\Gamma)} = 2Fe_{(K)} + 3CO_{2(\Gamma)}$?	т за	кону действующих мас	сс п	рямой реакции $Fe_2O_{3(K)}$			
1)	k· [Fe ₂ O ₃] · [CO] ³ k· [Fe ₂ O ₃] · [CO]	3) 4)	$k \cdot [CO]^3$ $k \cdot [Fe_2O_3]^3$					
	Образец билета по теме «Растворы»							

- Электролиты это вещества, которые...
 не растворимы в органических растворителях
 диссоциируют в растворе или расплаве на ионы
- растворимы в воде
 не проводят электрический ток

2. Для уравнения реакции CuSO₄ + KOH = ... сокращенное ионное уравнение имеет вид... 1. $CuSO_4 + 2OH = Cu(OH)_2 + SO_4^2$ 2. $Cu^{2+} + SO_4^{2-} + 2K^+ + 2OH = Cu(OH)_2 + K_2SO_4$ 3. $2K^+ + SO_4^{2-} = K_2SO_4$ 4. $Cu^{2+} + 2OH = Cu(OH)_2$ 3. Бромид бария вступит в реакцию обмена в водном растворе с ... 1. сульфатом меди (II) 3. гидроксидом лития 2. хлоридом меди (II) 4. азотной кислотой 4. Для соединений NH₄OH и NH₄NO₃ верно, что ... 1. оба — сильные электролиты 2. оба — слабые электролиты 3. только второе — сильный электролит 4. только первое — сильный электролит 5. Укажите правильное выражение К_{ДИС} гидроксида железа (III) по второй ступени: 3. $K_{JUC2} = \frac{[Fe^{3+}][OH^{-}]^{2}}{[Fe(OH)_{2}^{+}]};$ 1. $K_{\text{ДИС2}} = \frac{2[OH^-][Fe^{3+}]}{[Fe(OH)_2^+]};$ 4. $K_{JJHC2} = \frac{[Fe(OH)^{2+}][OH^{-}]}{[Fe(OH)_{2}^{+}]};$ 2. $K_{JUC2} = \frac{[OH^-]^2 [Fe^{3+}]}{[Fe(OH)_2]}$. Образец билета по теме «Окислительно-восстановительные реакции» 1. В реакции $K_2Cr_2O_7 + 3KNO_2 + 4H_2SO_4 = Cr_2(SO_4)_3 + 3KNO_3 + K_2SO_4 + 4H_2O$ окисляется ион ... 1) $SO_4^{2^-}$ 3) NO_2^{-7} 4) K^+ 1) SO₄²-2) Cr₂O₇²-2. Общая сумма коэффициентов в левой части уравнения реакции $Cu + H_2SO_4$ (конц) $\rightarrow CuSO_4 + SO_2$ + Н₂О равна ... 1) 3 3) 6 2) 4 3. Коэффициент перед восстановителем в уравнении реакции $I_2 + CI_2 + H_2O \rightarrow HIO_3 + HCI$ равен 1) 1 3) 3 2) 2 4. Сульфит натрия может проявлять в окислительно-восстановительных реакциях свойства 1) только окислителя 3) ни окислителя, ни восстановителя 2) только восстановителя 4) и окислителя, и восстановителя 5. Восстановительные свойства железо проявляет в реакции: 1) $FeO + H_2SO_4 = FeSO_4 + H_2O$ 3) $Fe(OH)_2 + 2HCI = FeCI_2 + 2H_2O$ 4) $FeCl_2 + 2NaOH = Fe(OH)_2 + 2NaCI$ 2) $2FeCl_2 + Cl_2 = 2FeCl_3$ Образец билета по теме «Электролиз растворов и расплавов» 1. Уравнение процесса, протекающего на инертном аноде при электролизе водного раствора йодида калия, имеет вид 1) $2H_2O - 4e^- = O_2 + 4H^+$ 3) $2l^2 - 2e^2 = l_2$ 4) $O_2 + 2H_2O + 4e^2 = 4OH^2$ 2) 4OH - 4e = 4OH 2. При электролизе водного раствора сульфата меди с инертными электродами образуются.. 1) на катоде - медь, на аноде - кислород, в растворе - серная кислота на катоде - медь, на аноде - сера, в растворе - гидроксид меди на катоде - водород, на аноде - кислород, в растворе - сульфат меди 4) на катоде - водород, на аноде - сера, в растворе - вода

Какое вещество дает одинаковые продукты при электролизе водного раствора и расплава?
 КВг
 СuCl₂

2)	NaOH	4)	KNO₃
вы	4. При электролизе раствора сульфата ме делится грамм(ов) меди .	ди(II) в течение 1 часа при силе тока 4 А на катоде
,	0,003 0,20	,	4,74 9,48
са	5. Если в результате электролиза водного выделившегося металла равна	pac	твора хлорида меди получено 5,6 л газа, то мас-
1)	· · ·		32 64
	Образец билета по разделу «	Эле	ектрохимические процессы»
	1. За точку отсчета стандартных окислите ние E° полуреакции $2H^{+}+2\bar{e}=H_{2}$ равное	льн	о-восстановительных потенциалов принято зна-
1)	6,02 ·10 ²³ В 0 В		8, 31B 22,4 B
го :	2. Устройство, в котором энергия химичестока, называется	кой	реакции превращается в энергию электрическо-
1)	электролизер	,	гальванический элемент анод
		выд	Zn/Zn ²⁺ Ag ⁺ /Ag, … целяется серебро ижутся от серебряного электрода к цинковому
	пите массу (г) выделившегося металла.	-	а хлорида меди получено 5,6 л (н.у.) газа. Опре-
1) 2)	8 16		64 32
1)	ОЛОВО	3)	в качестве анодного покрытия используют
2)		·	серебро
тен	ать реакция		елезном изделии в кислоте на аноде будет про-
1) 2)	$Sn^{2+} + 2e^{-} = Sn^{0}$ $2H^{+} + 2e^{-} = H_{2}$	3) 4)	$Fe^{0} - 2e^{-} = Fe^{2+}$ $Sn^{0} - 2e^{-} = Sn^{2+}$
1)	Для защиты железных изделий от коррозии в ка магний цинк	3)	стве катодного покрытия используется олово бериллий
	8. На катоде при контакте $Zn - Ni$ в нейтра $Zn - 2e^{-} = Zn^{2+}$ $2H_2O + O_2 + 4e^{-} = 4OH^{-}$	3)	ной среде будет протекать процесс Ni – 2e ⁻ = Ni ²⁺ 2H ⁺ + 2e ⁻ = H ₂ .
_,		,	-
1) 2)	• •		гся нанесение анодных покрытий нанесение катодных покрытий
буд	10. При нарушении хромового покрытия на цет протекать реакция	а же	елезном изделии во влажном воздухе на аноде
1)	$2H_2O + O_2 + 4e^- = 4OH^-$ Fe ⁰ - 2e = Fe ²⁺	3) 4)	$2H^{+} + 2e^{-} = H_{2}$ $Cr^{0} - 3e^{-} = Cr^{3+}$

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ ответов на вопросы рубежного контроля

- оценка «отлично» выставляется обучающемуся, если получено более 90% правильных ответов. оценка «хорошо» получено от 75 до 90% правильных ответов.

- оценка «удовлетворительно» получено от 60 до 75% правильных ответов.
- оценка «неудовлетворительно» получено менее 60% правильных ответов.

9. Промежуточная (семестровая) аттестация по курсу

9.1 Нормативная база проведения							
промежуточной аттестации обучающихся по результатам изучения дисциплины:							
1) действующее «Положение о текущем контроле успеваемости, промежуточной аттестации обучаю-							
щихся по программам высшего образования (бакалавриат, специалитет, магистратура) и среднего							
профессионального образования в ФГБОУ ВО Омский ГАУ»							
9	9.2 Основные характеристики						
промежуточной аттеста	нции обучающихся по итогам изучения дисциплины						
Цель	установление уровня достижения каждым обучающимся целей						
промежуточной аттестации -	обучения по данной дисциплине, изложенных в п.1.1 настоящего						
промежуточной аттестации	документа						
Форма	экзамен						
промежуточной аттестации -							
	1) подготовка к экзамену и сдача экзамена осуществляется за						
	счёт учебного времени (трудоёмкости), отведённого на экзаме-						
Место экзамена	национную сессию для обучающихся, сроки которой устанав-						
в графике учебного процесса:	ливаются приказом по университету						
в графике учесного процесса.	2) дата, время и место проведения экзамена определяется						
	графиком сдачи экзаменов, утверждаемым деканом выпускаю-						
	щего факультета						
Форма экзамена -	Письменный						
Время проведения экзамена	Дата, время и место проведения экзамена определяется графи-						
	ком сдачи экзаменов, утверждаемым деканом факультета						
Экзаменационная программа	1) представлена в фонде оценочных средств по дисциплине						
по учебной дисциплине:	2) охватывает разделы №№ 1-6 (в соответствии с п. 2.2 на-						
по учестои дисциплите.	стоящего документа)						
Методические материалы, оп-							
ределяющие процедуры оцени-	представлены в фонде оценочных средств по дисциплине						
вания знаний, умений, навыков:							

ПРОЦЕДУРА ПРОВЕДЕНИЯ ЭКЗАМЕНА

Процедура экзамена складывается из следующих этапов:

- 1. Выполнение студентом тестовой письменной работы по основным разделам курса с использованием справочного материала и микрокалькулятора (2 академических часа).
- 2. Проверка работы преподавателем, объявление предварительной оценки, принятие решения о собеседовании.
 - 3. Подведение общего итога экзамена, выставление оценки в ведомость и зачётную книжку.

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ ответов на вопросы экзамена

Результаты экзамена определяют оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» и объявляют в день экзамена.

- «Отлично» выставляется, если итоговое количество набранных баллов составляет 90% и более от максимально возможного количества баллов.
- «Хорошо» выставляется, если итоговое количество набранных баллов 75-89% от максимально возможного количества баллов.
- «Удовлетворительно» выставляется, если итоговое количество набранных баллов 60-74% от максимально возможного количества баллов
- «Неудовлетворительно» выставляется, если итоговое количество набранных баллов менее 60% от максимально возможного количества баллов

Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина»

Экзамен по дисциплине «Химия» для обучающихся по направлению 35.03.06 - Агроинженерия

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1

		Температура кипения ацетона 56 ⁰ С. Ео = 1,5 град⋅кг/моль), то температура кипо	ения	раствора сос	а раство тавит	орить (⁰ С.	6,4 г метанол	a (M _r =
	54,8 55,4		,	56,6 57,2				
1) 2)	1 моль	Средняя соль образуется при взаимоде Cu(OH) ₂ и 2 моль H ₂ SO ₄ Mg(OH) ₂ и 1 моль HCl		вии 1 моль Ca(Ol 1 моль Ba(O				
,	увелич	В периодах с увеличением порядкового ивается еняется		иера электроо изменяется по уменьшается	ериодич		ть элементов	
1s ²	4. 2s ² 2p ⁶ 3	Формула высшего оксида элемента, эл $s^2 3p^6 4s^1 3d^5$ имеет вид	ектр	онная конфиг	урация а	атома	которого	
1)	Э ₂ О ₃ Э ₂ О	•		Э ₂ О ₅ ЭО ₃				
то I 1)	при пов	Если скорость реакции увеличилась в ^д ышении температуры от 45 ⁰ до 75 ⁰ скор 2) 16	I раз ость 3)	реакции увел	ичится	перат в 4) 12	раз	дусов
,		Сместить равновесие в системе H ₂ (г) + реакционного сосуда атуру	3)	г) ↔ 2HCl(г) ; давление концентрацик				
	в систе	Если для некоторой реакции ∆G ⁰ r > 0, т ме преобладают продукты реакции ме преобладают исходные вещества		рным утвержд 3) ход реакц 4) нет одноз	ии пред	сказат	ь невозможн	0
1)		Если для реакции $4NH_3(r) + 3O_2(r) \rightarrow 2N$ ака в кислороде выделитсякДж тепл	оты		$_{r}H^{0} = -15$	532 кД)	ж, то при сгор	ании
pac 1)	9. створам 9 18	Сумма коэффициентов в сокращённом и фосфата калия и хлорида кальция рак	мол вна. 3) 4)	екулярно-ион 6 3				
1) 2)	10. атом ион	Наименьшей частицей растворённого	3)	цества в раств молекула электрон	орах эл	ектрол	итов являетс	Я
1)		Масса сульфата меди в 100 мл раство 2) 8	opa (3)		ей 0,5 м 4) - 8		равна гр	амм.
pae	12. зен м	Объём 60%-ного раствора серной кис. ил	поть	ы (р = 1,50 г/мл	і), содер	эжащи	й 4,5 моль ки	слоты
•	500	2) 490	3)	1000		4)	980	
so		Общая сумма коэффициентов в лево $+ H_2O$ равна	й ча	сти уравнения	і реакци	и Си ·	+ H ₂ SO _{4 (конц)} -	→ Cu-
1)	_	2) 4	3)	7	4) 3			

14. Окислителем в реакции $P + KClO_3 = P_2O_5 + KCl$ является

1)	P 2)	KCI	3)	P_2O_5	4)	KCIO ₃			
1)		ответ, в котором все пять м ра из водного раствора нитр	ата 3)		ольз	ованы для вытеснения			
	16. ЭДС гальва растворы их сульфат 0,15	анического элемента кадми гов (E^0 (Cd^{2+} / Cd) = -0.4 B, E^0 2) 0,20	(Ni ² ⁺	/Ni) = -0.25 В) равна	ктрод al) 0,5	3.			
	17. Продуктами, выделяющимися на инертных электродах при электролизе водного раствора серной кислоты, являются								
	H ₂ и S O ₂ и SO ₂		,	H ₂ и SO ₂ H ₂ и O ₂					
	•	ть окислительно-восстанов растворах или расплавах эл		•	-	•			
	гидролизом		3)	электролизом					
•	диссоциацией		,	этерификацией					
43	19. Для защиты железных изделий от коррозии в качестве катодного покрытия используется								
1)	магний		3)	ОЛОВО					
۷)	цинк		4)	бериллий					
		упповым реагентом для все							
1)	I', S ² ; Cl', Br	2	3)	NO ₂ , NO ₃ , CH ₃ CC SO ₃ ² , S ₂ O ₃ ² , C ₂ O ₄ ²	00				
2)	CO_3^{2} , $B_4O_7^{2}$, PO_4^{3}	AsO ₄ ³⁻	4)	SO_3^2 , $S_2O_3^2$, $C_2O_4^2$	-				

10. Информационное и методическое обеспечение учебного процесса по дисциплине

В соответствии с действующими государственными требованиями для реализации учебного процесса по дисциплине обеспечивающей кафедрой разрабатывается и постоянно совершенствуется учебно-методический комплекс (УМКД), соответствующий данной рабочей программе и прилагаемый к ней. При разработке УМКД кафедра руководствуется установленными университетом требованиями к его структуре, содержанию и оформлению. В состав УМКД входят перечисленные ниже и другие источники учебной и учебно-методической информации, средства наглядности.

Электронная версия актуального УМКД, адаптированная для обучающихся, выставляется в информационно-образовательной среде университета.

В рамках освоения дисциплины используются учебные материалы массового открытого онлайн-курса «Физическая химия. Термодинамика» (Открытое образование, https://openedu.ru/course/misis/CHTHER/, НИТУ «МИСиС») и массового открытого онлайн-курса «Физическая химия. Кинетика» (Открытое образование, https://openedu.ru/course/misis/CHKIN/, НИТУ «МИСиС»)

ПЕРЕЧЕНЬ

литературы, рекомендуемой для изучения дисциплины Б1.О.08 Химия для направления подготовки 35.03.06 Агроинженерия,

на 2019/20 уч. год		
Автор, наименование, выходные данные	Доступ	
1	2	
1. Основная литература		
Глинка Н. Л. Общая химия : учебник М. : Юрайт, 2014 900 с.	НСХБ	
Химия [Электронный ресурс] : учеб. пособие / Л. Н. Блинов [и др.] Электрон. текстовые дан Санкт-Петербург : Лань, 2012 481 с.	http://e.lanbook.com	
2. Дополнительная литература		
Бдюхина, О. Е. Химия: лабораторный практикум [Электронный ресурс] : учебное пособие / О. Е. Бдюхина, Е. А Нечаева Электрон. текстовые дан Омск : Изд-во ОмГАУ, 2017 108 с.	http://e.lanbook.com	
Коровин Н. В. Общая химия: учеб. для вузов М.: Высш. шк., 2009 556 с.	НСХБ	
Пресс, И. А. Основы общей химии [Электронный ресурс] : учеб. пособие / И. А. Пресс Электрон. текстовые дан Санкт-Петербург : Лань, 2012 496 с.	https://e.lanbook.com	
Стась, Н. Ф. Введение в химию [Электронный ресурс] : учебное пособие / Н. Ф. Стась Санкт-Петербург : Лань, 2016 140 с.	http://e.lanbook.com	
Химия и жизнь - XXI век : ежемес. научпопул. журн М. : [б. и.], 1996	НСХБ	
Шиманович И. Л. Химия: метод. указания, программа, решение типовых задач, программированные вопросы для самопроверки и контрольные задания для студентов-заочников инженерно-технических (нехимических) специальностей вузов М.: ВШ, 2009 128 с.	НСХБ	

ПЕРЕЧЕНЬ

РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» И ЛОКАЛЬНЫХ СЕТЕЙ УНИВЕРСИТЕТА,

необходимых для освоения дисциплины Б1.О.08 Химия для направления подготовки 35.03.06 Агроинженерия,

1. Удаленные электронные сетевые учебные ресурсы временного доступа, сформированные на основании прямых договоров с правообладателями (электронные библиотечные системы - ЭБС), информационные справочные системы		
Наименование	Доступ	
Электронно-библиотечная система издательства «Лань»	http://e.lanbook.com	
Электронно-библиотечная система «Znanium.com»	http:// znanium.com	
Электронно-библиотечная система «Электронная библиотека технического ВУЗа («Консультант студента»)	http://studentlibrary.ru	
Электронный периодический справочник «Система ГАРАНТ»	Локальная сеть университета	
2. Электронные сетевые учебные ресурсы открытого доступа:		
Словари энциклопедии на Академике	http://dic.academic.ru/	
МООК "Общая химия"	https://openedu.ru/course/misis/CHM/	
МООК «Химия»	https://online.edu.ru/public/course?face s-redirect=true&cid=572473	
Профессиональные базы данных	https://clck.ru/MC8Aq	