Должності Дата подп Уникальнь 43ba42f5d	ь: Проректор по образовательной деятельности исания: 05. 99.852 ральное государственное бюд у ий программный ключ: leae4116b : 10.95 разовательной саграрный	кетное образовательное учреждение бразования ₇ университет имени П.А. Столыпина»
	Факультет агрохимии, почвоведени	я, экологии, природообустройства и ьзования
	ОПОП по направлению подготовки 2	20.03.01 Техносферная безопасность
		ІНЫХ СРЕДСТВ циплине
	Б1.О.09	яимиX (
	Обеспечивающая преподавание дисциплины кафедра –	Математических и естественнонаучных дисциплин

ВВЕДЕНИЕ

- 1. Фонд оценочных средств по дисциплине является обязательным обособленным приложением к Рабочей программе учебной дисциплины.
- 2. Фонд оценочных средств является составной частью нормативно-методического обеспечения системы оценки качества освоения обучающимися указанной дисциплины.
- 3. При помощи ФОС осуществляется контроль и управление процессом формирования обучающимися компетенций, из числа предусмотренных ФГОС ВО в качестве результатов освоения учебной дисциплины.
- 4. Фонд оценочных средств по дисциплине включает в себя: оценочные средства, применяемые для входного контроля; оценочные средства, применяемые в рамках индивидуализации выполнения, контроля фиксированных видов ВАРС; оценочные средства, применяемые для текущего контроля и оценочные средства, применяемые при промежуточной аттестации по итогам изучения дисциплины.
- 5. Разработчиками фонда оценочных средств по дисциплине являются преподаватели кафедры математических и естественнонаучных дисциплин, обеспечивающей изучение обучающимися дисциплины в университете. Содержательной основой для разработки ФОС послужила Рабочая программа учебной дисциплины.

1. ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ

учебной дисциплины, персональный уровень достижения которых проверяется с использованием представленных в п. 3 оценочных средств

Компетенции, в формировании которых задействована дисциплина		Код и наименование индикатора достижений	Компоненты компетенций, формируемые в рамках данной дисциплины (как ожидаемый результат ее освоения)				
код			знать и понимать	уметь делать (действовать)	владеть навыками (иметь навыки)		
	1		<u>2</u> ьные компетенци	3	4		
2/16/4	T D						
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения	ИД-1 _{Ук-1} Анализирует задачу, выделяя ее базовые составляющие, осуществляет декомпозицию задачи.	Знать способы решения поставленных задач.	Уметь анализировать задачи, выделяя их базовые составляющие и осуществлять их декомпозицию.	Владеть методами и навыками анализа поставленных задач, выделения их базовых составляющих и осуществления их декомпозиции.		
	поставленных задач.	ИД-2 _{Ук-1} Находит и критически анализирует информацию, необходимую для решения поставленной задачи.	Знать методы нахождения и анализа информации, необходимой для решения поставленных задач.	Уметь находить и критически анализировать информацию, необходимую для решения поставленных задач.	Владеть методами и навыками по нахождению и критическому анализу информации, необходимой для решения поставленных задач.		
		ИД-3 _{УК-1} Рассматривает возможные варианты решения задачи, оценивая их достоинства и недостатки.	Знать методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки.	Уметь использовать методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки.	Владеть навыками рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки.		
		ИД-4 _{УК-1} Грамотно, логично, аргументировано формирует собственные суждения и оценки. Отличает факты от мнений, интерпретаций, оценок и т.д. в рассуждениях других участников деятельности.	Знать алгоритм формирования суждений и оценок.	Уметь грамотно, логично и аргументирова но формулироват ь свои суждения и оценки, отличая факты от интерпретаций.	Владеть способностью грамотно, логично, аргументировано формировать собственные суждения и оценки.		
		ИД-5 _{УК-1} Определяет и оценивает последствия	Знать методы определения и оценивания	Уметь использовать методы определения и	Владеть навыками определения и оценивания		

	возможных решений задачи.	последствий возможных решений задачи.	оценивания последствий возможных решений	последствий возможных решений задачи.
			задачи.	

ЧАСТЬ 2. ОБЩАЯ СХЕМА ОЦЕНИВАНИЯ ХОДА И РЕЗУЛЬТАТОВ ИЗУЧЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Общие критерии оценки и реестр применяемых оценочных средств

2.1 Обзорная ведомость-матрица оценивания хода и результатов изучения учебной дисциплины в рамках педагогического контроля

		Режим контрольно-оценочных мероприятий							
Категория		само-	BOOLANAO	Оценка со	Комис-				
категория контроля и оценки			взаимо-	препода-	представителя	сионная			
контроля и оценк	(VI	оценка	оценка	вателя	производства	оценка			
		1	2	3	4	5			
Входной контроль	1			Тест					
Индивидуализация выполнения*, контроль фиксированных видов ВАРС:	2								
- Индивидуальные задания по темам	2.1			Проверка задания преподавателем					
Текущий контроль:	3			проподаватолом					
- Самостоятельное изучение тем	3.1	Вопросы для самостоятельно го изучения темы							
- в рамках лабораторных занятий и подготовки к ним				Тест					
- Самоподготовка к аудиторным (лабораторным) занятиям	3.2	Вопросы для самоподготовки к лабораторным занятиям		Тест, учебное портфолио					
- в рамках обще- университетской системы контроля успеваемости	3.3			Тест					
Промежуточная аттестация* обучающихся по итогам изучения дисциплины	4	Вопросы для подготовки к экзамену		Проведение процедуры экзамена		Прием комиссией экзамена у задолжен-			

^{*} данным знаком помечены индивидуализируемые виды учебной работы

2.2 Общие критерии оценки хода и результатов изучения учебной дисциплины

1. Формальный критерий получения обучающимся положительной оценки по итогам изучения дисциплины:					
1.1 Предусмотренная программа изучения дисциплины обучающимся выполнена полностью до начала процесса промежуточной аттестации	1.2 По каждой из предусмотренных программой видов работ по дисциплине обучающийся успешно отчитался перед преподавателем, демонстрируя при этом должный (не ниже минимально приемлемого) уровень сформированности				
элементов компетенций 2. Группы неформальных критериев качественной оценки работы обучающегося в рамках изучения дисциплины:					
2.1 Критерии оценки качества хода процесса изучения обучающимся программы дисциплины (текущей успеваемости)	2.2 Критерии оценки качества выполнения конкретных видов ВАРС				
2.3 Критерии оценки качественного уровня итоговых результатов изучения дисциплины	2.4 Критерии аттестационной оценки качественного уровня результатов изучения дисциплины				

2.3 PEECTP элементов фонда оценочных средств по учебной дисциплине

Группа	Оценочное средство или его элемент
оценочных средств	Наименование
1	2
1. Средства для	Тестовые вопросы для проведения входного контроля
входного контроля	Критерии оценки ответов на тестовые вопросы входного контроля
2. Средства	Рекомендации по выполнению индивидуального задания
для индивидуализации	Критерии оценки результатов выполнения индивидуального задания
выполнения,	Вопросы для самостоятельного изучения темы
контроля фиксированных видов ВАРС	Критерии оценки самостоятельного изучения темы
	Вопросы для самостоятельного изучения темы
3 Cno=0=00	Общий алгоритм самостоятельного изучения темы
3. Средства	Критерии оценки самостоятельного изучения темы
для текущего контроля	Вопросы для самоподготовки по темам лабораторных занятий
	Критерии оценки самоподготовки по темам лабораторных занятий
4. Средства	Экзаменационная программа по учебной дисциплине
для промежуточной	Пример экзаменационного билета
аттестации по итогам	Плановая процедура проведения экзамена
изучения дисциплины	Критерии оценки ответов на вопросы итогового контроля

2.4. Описание показателей, критериев и шкал оценивания и этапов формирования компетенций в рамках дисциплины

	Уровни сформирования компетенций							
				компетенция не сформирована	минимальный	средний	высокий	
				офоринирована		1		
				2	Оценки сформированнос 3	4	5	
				Оценка	Оценка	Оценка «хорошо»	Оценка «отлично»	
				«неудовлетворительно»	«удовлетворительно»	,	•	
	Код				Характеристика сформирова	нности компетенции		
Индекс и название компетен ции	индикатор а достижен ий компетен ции	Индикаторы компетенции	Показатель оценивания – знания, умения, навыки (владения)	Компетенция в полной мере не сформирована. Имеющихся знаний, умений и навыков недостаточно для решения практических (профессиональных) задач	Сформированность компетенции соответствует минимальным требованиям. Имеющихся знаний, умений, навыков в целом достаточно для решения практических (профессиональных) задач	Сформированность компетенции в целом соответствует требованиям. Имеющихся знаний, умений, навыков и мотивации в целом достаточно для решения стандартных практических (профессиональных) задач	Сформированность компетенции полностью соответствует требованиям. Имеющихся знаний, умений, навыков и мотивации в полной мере достаточно для решения сложных практических (профессиональных) задач	Формы и средства контроля формирования компетенций
				I Критериі	I и оценивания		задач	
			Знать	Обучающийся не знает	Обучающийся знает	Обучающийся свободно	Обучающийся в	Учебное
	ИД-1 _{УК-1}	Полнота знаний	способы решения поставленных задач	способы решения поставленных задач	основные способы решения поставленных задач	знает способы решения поставленных задач	совершенстве знает способы решения поставленных задач	портфолио. Экзаменационные вопросы.
		Наличие умений	Уметь анализировать задачи, выделяя их базовые составляющие и осуществлять их декомпозицию	Обучающийся не умеет анализировать задачи, выделяя их базовые составляющие и осуществлять их декомпозицию	Обучающийся неуверенно умеет анализировать задачи, выделяя их базовые составляющие	Обучающийся допускает малозначительные неточности при анализе задач, выделяя их базовые составляющие и осуществлять их декомпозицию	Обучающийся умеет четко анализировать задачи, свободно выделяя их базовые составляющие и осуществлять их декомпозицию	Учебное портфолио. Экзаменационные вопросы.
УК-1		Наличие навыков	Владеть методами и навыками анализа поставленных задач, выделения их базовых составляющих и осуществления их декомпозиции	Обучающийся не владеет методами и навыками анализа поставленных задач, выделения их базовых составляющих и осуществления их декомпозиции	Обучающийся владеет основными методами и навыками анализа поставленных задач	Обучающийся владеет основными методами и навыками анализа поставленных задач, выделения их базовых составляющих и осуществления их декомпозиции	Обучающийся свободно владеет методами и навыками анализа поставленных задач, выделения их базовых составляющих и осуществления их декомпозиции	Учебное портфолио. Экзаменационные вопросы.
	ИД-2 _{УК-1}	Полнота знаний	Знать методы нахождения и анализа информации, необходимой для решения поставленных задач	Обучающийся не знает методы нахождения и анализа информации, необходимой для решения поставленных задач	Обучающийся знает основные методы нахождения и анализа информации, необходимой для решения поставленных задач	Обучающийся свободно знает методы нахождения и анализа информации, необходимой для решения поставленных задач	Обучающийся в совершенстве знает методы нахождения и анализа информации, необходимой для решения поставленных задач	Учебное портфолио. Экзаменационные вопросы.
		Наличие умений	Уметь находить и критически анализировать	Обучающийся не умеет находить и критически анализировать информацию, необходимую для решения	Обучающийся испытывает затруднения при нахождении и критическом анализе информации,	Обучающийся допускает малозначительные неточности находя и критически анализируя	Обучающийся умеет свободно находить и критически анализировать	Учебное портфолио. Экзаменационные вопросы.

	1	T					
		информацию, необходимую для решения поставленных задач	поставленных задач	необходимой для решения поставленных задач	информацию, необходимую для решения поставленных задач	информацию, необходимую для решения поставленных задач	
	Наличие навыков	Владеть методами и навыками по нахождению и критическому анализу информации, необходимой для решения поставленных задач	Обучающийся не владеет методами и навыками по нахождению и критическому анализу информации, необходимой для решения поставленных задач	Обучающийся неуверенно владеет методами и навыками по нахождению и критическому анализу информации, необходимой для решения поставленных задач	Обучающийся владеет основными методами и навыками по нахождению и критическому анализу информации, необходимой для решения поставленных задач	Обучающийся свободно владеет методами и навыками по нахождению и критическому анализу информации, необходимой для решения поставленных задач	Учебное портфолио. Экзаменационные вопросы.
	Полнота знаний	Знать методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся не знает методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся слабо знает методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся с малозначительными неточностями знает методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся в совершенстве знает методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Учебное портфолио. Экзаменационные вопросы.
ИД-З _{УК-1}	Наличие умений	Уметь использовать методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся не умеет использовать методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся испытывает затруднения, используя методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся умеет использовать методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся свободно использует методы рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Учебное портфолио. Экзаменационные вопросы.
	Наличие навыков	Владеть навыками рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся не владеет навыками рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся неуверенно владеет навыками рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся владеет навыками рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Обучающийся в совершенстве владеет навыками рассмотрения возможных вариантов решения задачи, оценивая их достоинства и недостатки	Учебное портфолио. Экзаменационные вопросы.
	Полнота знаний	Знать алгоритм формирования суждений и оценок	Обучающийся не знает алгоритм формирования суждений и оценок	Обучающийся допускает неточности в алгоритме формирования суждений и оценок	Обучающийся знает алгоритм формирования суждений и оценок	Обучающийся в совершенстве знает алгоритм формирования суждений и оценок	Учебное портфолио. Экзаменационные вопросы.
ИД-4 _{УК-1}	Наличие умений	Уметь грамотно, логично и аргументировано формулировать свои суждения и оценки, отличая факты от интерпретаций	Обучающийся не умеет грамотно, логично и аргументировано формулировать свои суждения и оценки, отличая факты от интерпретаций	Обучающийся испытывает затруднения формулируя свои суждения и оценки, отличая факты от интерпретаций	Обучающийся допускает незначительные неточности, формулируя свои суждения и оценки, отличая факты от интерпретаций	Обучающийся грамотно, логично и аргументировано формулирует свои суждения и оценки, отличая факты от интерпретаций	Учебное портфолио. Экзаменационные вопросы.

	Наличие навыков	Владеть способностью грамотно, логично, аргументировано формировать собственные суждения и оценки	Обучающийся не владеет способностью грамотно, логично, аргументировано формировать собственные суждения и оценки	Обучающийся неуверенно владеет способностью грамотно, логично, аргументировано формировать собственные суждения и оценки	Обучающийся владеет способностью грамотно, логично, аргументировано формировать собственные суждения и оценки, допуская незначительные неточности	Обучающийся свободно владеет способностью грамотно, логично, аргументировано формировать собственные суждения и оценки	Учебное портфолио. Экзаменационные вопросы.
	Полнота знаний	Знать методы определения и оценивания последствий возможных решений задачи	Обучающийся не знает методы определения и оценивания последствий возможных решений задачи	Обучающийся знает некоторые методы определения и оценивания последствий возможных решений задачи	Обучающийся знает основные методы определения и оценивания последствий возможных решений задачи	Обучающийся в совершенстве знает методы определения и оценивания последствий возможных решений задачи	Учебное портфолио. Экзаменационные вопросы.
ИД-5 _{УК-1}	Наличие умений	Уметь использовать методы определения и оценивания последствий возможных решений задачи	Обучающийся не умеет использовать методы определения и оценивания последствий возможных решений задачи	Обучающийся испытывает затруднения, используя методы определения и оценивания последствий возможных решений задачи	Обучающийся допускает незначительные неточности, используя методы определения и оценивания последствий возможных решений задачи	Обучающийся свободно использует методы определения и оценивания последствий возможных решений задачи	Учебное портфолио. Экзаменационные вопросы.
	Наличие навыков	Владеть навыками определения и оценивания последствий возможных решений задачи	Обучающийся не владеет навыками определения и оценивания последствий возможных решений задачи	Обучающийся неуверенно владеет навыками определения и оценивания последствий возможных решений задачи	Обучающийся владеет основными навыками определения и оценивания последствий возможных решений задачи	Обучающийся свободно владеет навыками определения и оценивания последствий возможных решений задачи	Учебное портфолио. Экзаменационные вопросы.

ЧАСТЬ 3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков, характеризующих этапы формирования компетенций

Часть 3.1. Типовые контрольные задания, необходимые для оценки знаний, умений, навыков 3.1.1. Средства

для индивидуализации выполнения, контроля фиксированных видов ВАРС 3.1.1.1. Рекомендации по выполнению индивидуального задания

Индивидуальные задания выполняются по темам:

«Способы выражения концентрации растворов»

«Окислительно-восстановительные процессы»

«Классификация и номенклатура органических соединений»

При выполнении индивидуального задания обучающиеся могут использовать любую учебную литературу, консультироваться с преподавателем. Каждый обучающийся выполняет свой вариант задания и в установленный срок сдает выполненную работу на кафедру преподавателю для проверки. Преподаватель проверяет работу и делает соответствующую отметку: «зачтено» или «не зачтено». Если работа не зачтена, её возвращают обучающемуся на доработку, с последующей повторной проверкой.

ОБРАЗЕЦ

варианта индивидуального задания

- по теме «Способы выражения концентрации растворов»
- 1. Чему равна масса воды, в которой надо растворить 50 г хлорида калия для получения 10%-ного раствора?
- 2. Имеется 200 г 50%-ного (по массе) раствора NaCl. Сколько граммов 10%-ного (по массе) раствора можно приготовить из этого количества?
 - 3. Сколько граммов хлороводородной кислоты содержится в 200 мл 0,75 н раствора?
 - 4. Определите молярную концентрацию 0,5 н раствора хлорида алюминия.
- 5. К 1 л 0,5 н раствора NaOH прилили 4 л воды. Определите концентрацию полученного раствора.

ОБРАЗЕЦ

варианта индивидуального задания

по теме «Окислительно-восстановительные процессы»

Методом электронного баланса расставьте коэффициенты в данных уравнениях реакций; определите общую сумму коэффициентов в каждом уравнении; определите общую сумму коэффициентов в левой части уравнения; укажите, чему равен коэффициент перед молекулой окислителя; укажите, чему равен коэффициент перед молекулой восстановителя.

1. $KJ + KJO_3 + H_2SO_4 \rightarrow J_2 + K_2SO_4 + H_2O$

2. Al + KNO₃ + KOH \rightarrow K₃AlO₃ + NH₃ + H₂O

ОБРАЗЕЦ

варианта индивидуального задания

по теме «Классификация и номенклатура органических соединений»

Назовите соединения по ИЮПАК номенклатуре, укажите класс:

КРИТЕРИИ ОЦЕНКИ

результатов выполнения индивидуального задания

- оценка «зачтено» выставляется, если обучающийся выполнил более 60% задания;
- оценка «не зачтено» выставляется, если обучающийся выполнил менее 60% задания.

3.1.2. ВОПРОСЫ для проведения входного контроля

ОБРАЗЕЦ БИЛЕТА для проведения входного контроля

1. С каким из перечисленных веществ будет реаги	•
1) HCI 2) Zn	3) NaCl 4) CuO
2. Укажите формулу основной соли:	4) 000
1) NaCl	3) NaHCO₃
2) AIOHSO ₄	4) K ₂ [Zn(OH) ₄]
,	, == \ , ,:=
3. Какой гидроксид взаимодействует с кислотами	
1) Zn(OH) ₂	3) Pb(OH) ₂
2) Al(OH) ₃	4) Ca(OH) ₂
4. К какому типу солей относится соль Al(H ₂ AsO ₄) ₃	
1) комплексная	3) средняя 4) киспая
2) основная	4) кислая
5. Укажите соединение с ковалентной полярной св	
1) Br ₂	3) KCI
2) LiF	4) HCI
6. Укажите порядковый номер и название элем электрона, а на 3d- подуровне -5 электронов?	
1) №20 (кальций)	3) №25 (марганец)
2) №23 (ванадий)	4) №26 (железо)
7. Определите степень окисления иона-комплексо	ообразователя и его координационное число в
соединении $K_4[Fe(CN)_6]$:	
1) +2; 6	3) +6; 6
2) +3; 6	4) +2; 4
8. Зная константы устойчивости комплексных і	ионов, укажите, какой из них является самым
непрочным?	
1) $K_{ycm}[BiBr_4]^- = 6.61 \cdot 10^7$	3) $K_{ycm}[AgBr_2]^- = 2.19 \cdot 10^7$
2) $K_{ycm}[HgBr_4]^{2-} = 4.37 \cdot 10^{21}$	4) $K_{ycm}[CdBr_4]^{2-} = 5.01 \cdot 10^3$
9. Выберите правильное название соединения К2[PdCl ₆]:
1) гексахлоропалладат (III) калия	3) гексахлоропалладат (I) калия
2) гексахлоропалладат (II) калия	4) гексахлоропалладат (IV) калия
10. Вычислите теплоту реакции получения гидро $\Delta H^{oбp.}CaO =$ - 635,7 кДж/моль, $\Delta H^{oбp.}H_2O =$ - 285,8 к 1) 65,3 кДж/моль 2) - 1908,3 кДж/моль	оксида кальция из оксида кальция и воды, если «Дж/моль, <i>ΔН^{обр.}Са(ОН)₂</i> = - 986,8 кДж/моль. 3) - 65,3 кДж/моль 4) 1908,3 кДж/моль
11. Температурный коэффициент скорости химич	ческой реакции равен 2. Как изменится скорость
реакции при охлаждении системы от 100° C до 80°	°C
1) увеличится в 2 раза	3) увеличится в 4 раза
2) уменьшится в 4 раза	4) уменьшится в 2 раза
12. Какая из перечисленных солей в водном расти	воре не подвергается гидролизу?
1) MnSO ₄	3) NaNO ₃
2) K ₃ BO ₃	4) Na ₂ ZnO ₂
13. Вычислите [H †] в 0,1м растворе HCIO (К _{дисс.} =5	
1) 0,1 · 5 · 5 · 10 ⁻⁸	3) 0,1 / 5 · 10 ⁻⁸
2) 5 · 10 ⁻⁸ / 0,1	4) $5 \cdot 10^{-8} \cdot 10^{-1}$
14. Сколько граммов воды надо взять для пригото	вления 500 г 15%-го раствора?
1) 325	3) 75
2) 425	4) 300
15. В каком объеме 5М раствора содержится 40 г	NaOH?
1) 1 л	3) 0,2 л

2) 1.5 л 4) 4 п 16. Чему равна масса хлорида бария в 250 мл раствора с нормальной концентрацией 0,25 моль/л? 1) 6,5 3) 1,5 2) 10,0 4) 3,3 17. Общая сумма коэффициентов в уравнении реакции КСІО₃ = КСІ + О₂ равна 3) 7 4) 3 2) 5 18. Какое из приведенных выражений соответствует закону действующих масс прямой реакции $Fe_2O_{3(K)} + 3CO_{(\Gamma)} = 2Fe_{(K)} + 3CO_{2(\Gamma)}$? 1) $k \cdot [Fe_2O_3] \cdot [CO]^3$ 3) k· [CO]³ 4) $k \cdot [Fe_2O_3]^3$ 2) k· [Fe₂O₃] · [CO] 19. Определите реакцию, для которой повышение давления вызовет смещение равновесия влево: 1) $Zr_{(r)} + 2 Cl_{2(r)} \leftrightarrow ZrCl_{4(r)}$ 3) $10NO_{(\Gamma)} + P_{4(\Gamma)} \leftrightarrow 5N_{2(\Gamma)} + P_4O_{10(TB)}$ 2) $2NH_{3(r)} + SO_{(r)} + H_2O_{(r)} \leftrightarrow (NH_4)_2SO_{4(r)}$ 4) $2CO_{2(r)} \leftrightarrow 2CO_{(r)} + O_{2(r)}$ 20. Для уравнения реакции CuSO₄+K₂S=... сокращенное ионное уравнение имеет вид: 3) Cu⁺² + S²⁻ = CuS 4) 2K⁺ + SO₄²⁻ + Cu⁺² + S² = CuS + K₂SO₄ 1) $2K^{+} + SO_{4}^{2} = K_{2}SO_{4}$ 2) $CuSO_4 + S^2 = CuS + SO_4^2$

КРИТЕРИИ ОЦЕНКИответов на вопросы входного контроля

- оценка «отлично» выставляется обучающемуся, если получено от 81 до 100% правильных ответов;
- оценка «хорошо» получено от 71 до 80% правильных ответов;
- оценка «удовлетворительно» получено от 61 до 70% правильных ответов;
- оценка «неудовлетворительно» получено менее 60% правильных ответов.

3.1.3 Средства для текущего контроля

вопросы

для самостоятельного изучения темы «Типы химических связей»

- 1. Основные типы химической связи.
- 2. Ковалентная связь.
- 2.1. Метод валентных связей (ВС).
 - свойства и характеристики ковалентной связи;
 - механизмы образования ковалентной связи;
 - гибридизация атомных орбиталей.
- 2.2. Понятие о методе молекулярных орбиталей (МО).
- 3. Ионная связь.
- 4. Водородная связь.
- 5. Металлическая связь.

вопросы

для самостоятельного изучения темы

«Высокомолекулярные органические соединения (природные, синтетические)»

Изучить следующие представители высокомолекулярных органических соединений: полисахариды, белки, нуклеиновые кислоты, волокна, каучуки, пластмассы **по плану:**

- 1. Распространение в природе.
- 2. Классификация.
- 3. Получение.
- 4. Физические свойства и химические свойства
- 5. Биологическая роль.
- 6. Применение.

Общий алгоритм самостоятельного изучения темы

- 1) Ознакомиться с рекомендованной учебной литературой и электронными ресурсами по теме (ориентируясь на вопросы для самоконтроля).
 - 2) На этой основе составить развёрнутый план изложения темы
 - 3) Выбрать форму отчетности конспектов (план конспект, текстуальный конспект, свободный

конспект, конспект - схема)

- 2) Оформить отчётный материал в установленной форме в соответствии методическими рекомендациями
- 3) Провести самоконтроль освоения темы по вопросам, выданным преподавателем
- 4) Предоставить отчётный материал преподавателю по согласованию с ведущим преподавателем
- 5) Подготовиться к предусмотренному контрольно-оценочному мероприятию по результатам самостоятельного изучения темы
- 6) Принять участие в указанном мероприятии, пройти рубежное тестирование по разделу на аудиторном занятии и заключительное тестирование в установленное для внеаудиторной работы время

КРИТЕРИИ ОЦЕНКИ самостоятельного изучения темы

Вопросы темы, вынесенной на самостоятельное изучение, входят в тематический тест.

- оценка «отлично» выставляется обучающемуся, если получено от 80 до 100% правильных ответов;
- оценка «хорошо» получено от 71 до 80% правильных ответов;
- оценка «удовлетворительно» получено от 61 до 70% правильных ответов;
- оценка «неудовлетворительно» получено менее 60% правильных ответов.

Вопросы для самоподготовки к лабораторным занятиям

Раздел 1 Основные понятия и законы химии. Классификация неорганических соединений

Лабораторное занятие 1 «Способы получения и химические свойства оксидов, оснований и кислот»

- 1. Оксиды. Определение, номенклатура, способы получения, химические свойства.
- 2. Основания. Определение, номенклатура, способы получения, химические свойства.
- 3. Кислоты. Определение, номенклатура, способы получения, химические свойства.

Лабораторное занятие 2 «Способы получения и химические свойства солей»

- 1. Соли. Определение, номенклатура, способы получения, химические свойства.
- 2. Взаимосвязь между классами неорганических соединений.

Лабораторное занятие 3 «Комплексные соединения»

- 1. Каковы основные положения теории Вернера?
- 2. Атомы каких элементов способны к комплексообразованию?
- 3. Каково строение комплексных соединений?
- 4. По каким критериям классифицируются комплексные соединения?
- 5. Какие виды химических связей имеются в молекулах комплексов?
- 6. Что такое лиганды, комплексообразователь, координационное число?
- 7. Какое строение имеет внешняя и внутренняя сфера комплексного соединения?
- 8. Во всех ли комплексах имеется внешняя сфера
- 9. Какие типы химических реакций характерны для комплексных соединений?
- 10. В состав каких природных комплексов входит железо?
- 11. В чем заключается физиологическая функция гемоглобина?
- 12. В каких областях науки и техники применяются комплексные соединения?

Раздел 2. Строение вещества

Лабораторное занятие 4 «Строение атома. Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение вещества»

- 1.Основные экспериментальные данные, доказывающие современное представление о теории строения атома.
 - 2. Квантовая характеристика излучения и поглощения энергии. Уравнение Планка.
 - 3. Строение электронной оболочки атома по Бору.

- 4. Ядро атома и его состав. Изотопы. Изобары.
- 5. Принцип неопределённости Гейзенберга.
- 6. В чём сущность квантовых чисел n, l, m_l и m_s ?
- 7. Принцип несовместимости Паули.
- 8. Максимальная ёмкость электронов на уровне и подуровне.
- 9. Принцип наименьшей энергии. Правило Клечковского.
- 10. Правило Гунда (Хунда).
- 11. По какому принципу делят элементы на s-, p-, d-, f- семейства?
- 12.Периодический закон Д.И. Менделеева. Энергия ионизации, сродства к электрону, электроотрицательность.
 - 13. Периодическая система элементов Д.И. Менделеева.

Раздел 3. Общие закономерности протекания химических реакций

Лабораторное занятие 5 «Энергетика химических реакций. Расчеты по термодинамическим уравнениям» Лабораторное занятие 6 «Основные представления химической кинетики и равновесия. Зависимость скорости химических реакций от различных факторов»

- 1. Скорость химической реакции. Закон действующих масс (кинетический). Константа скорости реакции. Влияние температуры на скорость реакции. Правило Вант-Гоффа. Энергия активации и путь реакции. Уравнение Аррениуса.
- 2.Каталитические реакции и катализаторы. Гомогенный и гетерогенный катализ. Ферментативный катализ. Механизм катализа.
- 3. Условие равновесия. Закон действующих масс (термодинамический). Свободная энергия Гиббса и константа равновесия. Свойства химического равновесия. Влияние различных факторов на равновесие. Принцип Ле-Шателье.
- 4. Какие факторы влияют на скорость химической реакции? Сформулируйте закон действия масс.
 - 5. Что характеризует константа скорости химической реакции, константа равновесия?
 - 6. Как практически довести обратимую реакцию до конца?
- 7.Приведите формулу, по которой можно вычислить температуру наступления равновесия по термодинамическим данным.

Раздел 4. Растворы

Лабораторное занятие 7 «Приготовление растворов. Способы выражения концентрации растворов»

- 1. Приведите характеристику наиболее часто используемых в химической практике способов выражения концентрации растворов: массовой доли, молярной, нормальной, моляльной.
 - 2. Что называется осмотическим давлением?
- 3. Почему растворы кипят при более высокой и замерзают при более низкой температуре, чем чистые растворители?
 - 4. Что называется криоскопической и эбулиоскопической константами растворителя?

Лабораторное занятие 6 «Теория электролитической диссоциации. Ионообменные реакции. Гидролиз солей»

- 1. Что такое электролитическая диссоциация? Какова роль растворителя в этом процессе?
- 2. Что называется степенью электролитической диссоциации? Как зависит степень диссоциации от концентрации раствора?
 - 3. Какие гидроксиды называют амфотерными?
- 4. Что такое константа диссоциации? Какова взаимосвязь между степенью и константой диссоциации?
 - 5. Что называется гидролизом солей?
 - 6. Какие соли подвергаются гидролизу?
 - 7. В каких случаях в результате гидролиза получаются кислые и основные соли?

Что называется степенью гидролиза?

- 8. Какие факторы влияют на гидролиз солей?
- 9. Как влияет на гидролиз концентрация солей?
- 10. В каком направлении смещается равновесие гидролиза солей при нагревании?

- 11. Что называется константой гидролиза?
- 12. Как можно усилить или уменьшить процесс гидролиза?

Раздел 5. Электрохимические процессы

Лабораторное занятие 9 «Окислительно-восстановительные реакции»

- 1. Какие химические реакции относятся к окислительно-восстановительным?
- 2. Окислители (акцепторы электронов) и восстановители (доноры электронов).
- 3. Окислительные и восстановительные свойства простых веществ и химических соединений, влияние степени окисления электроноактивных частиц.
 - 4. Классификация редокс-реакций.
- 5. Составление химических окислительно-восстановительных уравнений на основе баланса электронов.

Лабораторное занятие 10 «ЭДС гальванических элементов. Электролиз. Коррозия металлов»

- 1. Ионно-металлический электрод. Уравнение Нернста. Газовые электроды. Водородный электрод. Кислородный электрод Стандартный электродный потенциал.
- 2. Электрохимический ряд напряжений металлов. Окислительно-восстановительные свойства металлов.
- 3.Гальванический элемент. Элемент Даниэля-Якоби. Катодный, анодный процессы. Схема электрохимической цепи.
 - 4. Термодинамика гальванического элемента. ЭДС гальванического элемента.
- 5. Коррозия металлов. Химическая коррозия. Электрохимическая коррозия металлов и условия ее протекания. Схема КГЭ. Катодный и анодный процессы.
- 6. Защита металлов от коррозии. Защитные покрытия: неметаллические, металлические (анодные, катодные). Электрохимическая защита: катодная, протекторная.

Раздел 6. Основы аналитической химии

Лабораторное занятие 11 «Качественные реакции открытия катионов и анионов»

- 1. Какие реакции относятся к аналитическим?
- 2. Что такое предел обнаружения?
- 3. Какие реакции называются специфическими?
- 4. По каким признакам катионы и анионы делят на аналитические группы?
- 5. В каких случаях проводят систематический анализ, а в каких дробный анализ?
- 6.Зачем перед проведением систематического анализа прибегают к процедуре предварительных испытаний?
 - 7. По каким принципам объединяют вещества в аналитические группы?
 - 8. Групповые реагенты и группы катионов в кислотно-основном методе анализа.

Лабораторное занятие 12 «Стандартизация раствора кислоты. Определение щелочи в растворе»

- 1. Сущность метода нейтрализации.
- 2. Основные реакции и титранты метода.
- 3. Типы кислотно-основного титрования (ацидиметрия, алкалиметрия).
- 4. Определение точки эквивалентности.
- 5. Понятие о кривых титрования.
- 6. Индикаторы, применяемые в методе кислотно-основного титрования, их выбор.
- 7. Область перехода индикаторов.
- 8. Показатель титрования индикаторов.
- 9. Количественные расчеты.

Лабораторное занятие 13 «Стандартизация раствора трилона Б. Определение жесткости H₂O»

- 1. Классификация методов комплексонометрии.
- 2. Сущность методов, требования к реакциям.

- 3. Свойства комплексных соединений, используемые в аналитической химии: комплексоны, комплексонаты, этилендиаминтетраацетат натрия как титрант в комплексонометрии, металлиндикаторы.
 - 4. Общая характеристика природных вод.
- 5. Виды жидкости природных вод. Единица измерения жесткости по ГОСТу. Умягчение воды. Методы умягчения: термический и реагентные методы (известкования, содово-известковый, фосфатный), достоинства и недостатки. Метод ионного обмена. Иониты. Катиониты, аниониты. Реакции обмена ионов катионита (анионита) на ионы раствора при умягчении воды и снижении общего солесодержания. Обменная емкость ионита.
- 6. Титриметрические методы определения общей, карбонатной и некарбонатной жесткости. Количественные расчеты.

Раздел 7. Основы органической химии

Лабораторное занятие 14 «Классификация, номенклатура и изомерия органических соединений»

- 1. Основные понятия органической химии.
- 2. Основные положения теории химического строения А.М. Бутлерова.
- 3. Явление изомерии.

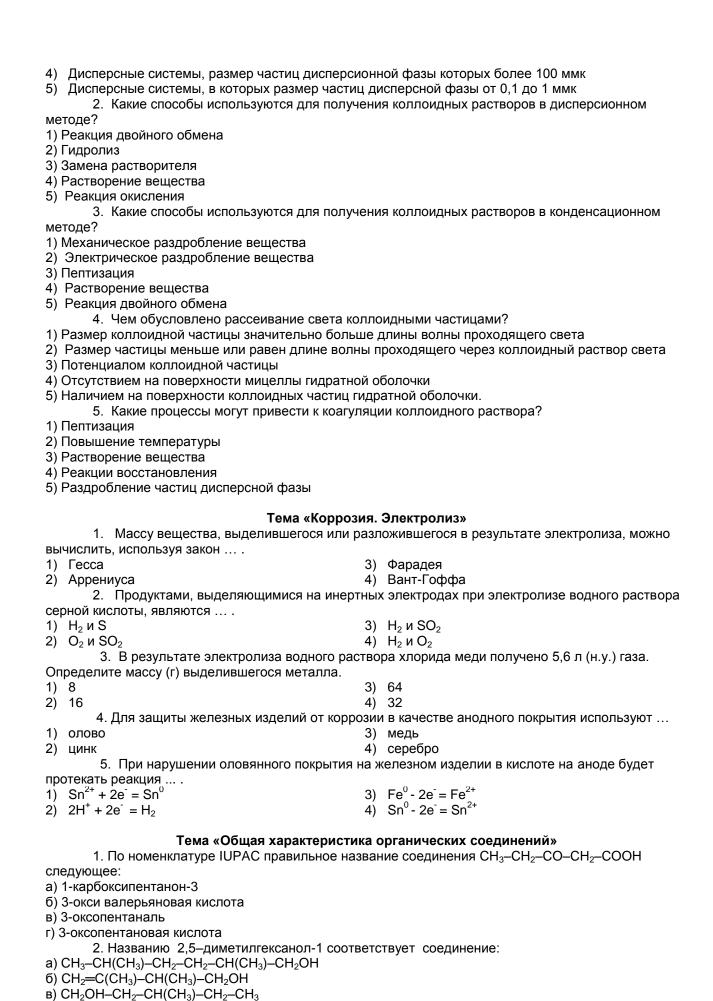
4d.

- 4. Классификация органических соединений.
- 5. Номенклатура органических соединений.

Лабораторное занятие 15 «Качественная идентификация органических соединений»

Основные физико-химические свойства углеводородов и их функциональных производных:

- ациклические углеводороды (предельные и непредельные);
- кислородсодержащие органические соединения: спирты, фенолы, альдегиды, кетоны, карбоновые кислоты;
 - высокомолекулярные органические соединения.


	Образцы билетов д	для	текущего контроля
	Тема «Основные классы	нео	оганических соединений»
	1. Укажите элементы, которые проявляю	тво	соединениях только положительную степень
окі	исления:		•
1)	Ni, Si, Bi	3)	As, Os, Cs
,	At, Li, Pt		Ba, Ta, Ra
,	2. Гидроксид алюминия может взаимоде	,	
1)	H ₂ SO ₄ , H ₂ O, NaCl		CaCl ₂ , KOH, HBr
,	NaOH, HNO ₃ , HCI	,	MgO, Na ₂ SO ₄ , CuCl ₂
,	3. Каким способом можно получить гидро	,	
1)	FeSO ₄ + NaOH		$Fe_2(SO_4)_3 + KOH$
,	FeCl ₃ + H ₂ SO ₄		Fe ₂ O ₃ + HCl
,	4. Только кислые соли представлены в о	,	
1)	NH ₄ NO ₃ , MgHPO ₄		$AI(OH)_2NO_3$, $K_3[Fe(CN)_6]$
	KAIO ₂ , CaHPO ₄		NH ₄ HSiO ₃ , NaH ₂ PO ₄
,		,	и 3 моль гидроксида калия и 1 моль фосфорной
кис	слоты?		the the transfer of the transfer of
	двойная	3)	кислая
_ :	основная	,	средняя
_,		,	- Francisco
	Тема «Стр	оен	ие атома»
	 Ядро изотопа хлора ₁₇Cl³⁷ содержит 		
1)	17	3)	
2)	18		37
,	2. Электронную конфигурацию, соответс	TBVK	ошую атому Ar. имеет ион
1)	Br ⁻	3)	S ⁶⁺
2)	S ² -		Ma^{2+}

3. Определите сумму главного и побочного (орбитального) квантовых чисел для подуровня

1) 4 2) 5						
4. Используя правило Гунда, определите суммарное спиновое число подуровня, если он наполовину заполнен электронами. 1) 1/2 3) 5/2	электронов 3р –					
 3/2 По какой формуле определяется максимальное число электронов данного дан	го энергетического					
уровня? 1) n ² 3) 2n ² 2) 2l + 1 4) 2(2l + 1)						
Тема «Комплексные соединения»						
1. Определите заряд комплексообразователя в следующем ко	мплексном соединении:					
$K_2[Pt(OH)_5CI]$ 1) +1 3) +3						
2) +2 4) +4 2. Какие ионы являются лигандами в комплексном соединении $K_2[Pt(0)]$	∩H)-Cl12					
1) OH 3) K ⁺	<i>511)</i> 5 0 1]∶					
2) Cl ⁻ , Pt ⁴⁺ 4) OH ⁻ , Cl ⁻						
 Среди приведенных названий, укажите правильное название которого дана в первом вопросе: хлорид пентагидроксоплатинат(II) калия хлоропентагидроксоплатинат(IV) калия хлорид гидроксоплатины (II) калия хлорид пентагидроплатины (IV) калия Зная константы устойчивости комплексных ионов, укажите, которы 						
непрочным:						
$\begin{array}{lll} K_{yc\tau} \left[Ag(NH_3)_2 \right]^+ = 1,62 \cdot 10^7 ; & K_{yc\tau} \left[Cd(NH_3)_4 \right]^{2+} = 3,63 \cdot 10^6 ; \\ K_{yc\tau} \left[Co(NH_3)_6 \right]^{2+} = 2,45 \cdot 10^6 ; & K_{yc\tau} \left[Cu(NH_3)_4 \right]^{2+} = 1,07 \cdot 10^{12} ; \end{array}$						
1) $[Ag(NH_3)_2]^+$ 3) $[Co(NH_3)_6]^{2+}$						
2) $[Cd(NH_3)_4]^{2+}$ 4) $[Cu(NH_3)_4]^{2+}$						
5. Укажите соединение с комплексным катионом:						
1) Na ₂ [Hg(NO ₂) ₄] 3) NH ₄ Cl 2) InCl ₃ 4) K ₂ [ZnCl ₄]						
TV						
Тема «Химическая кинетика и химическое равнове 1. При увеличении общего давления в 2 раза скорость элементарной $O_2 = 2NO_2$ увеличится в раз(а).						
1) 2						
2) 4 4) 8 2. Если при увеличении температуры от 20 до 40°C скорость реакции	возросла в 9 раз. то					
значение температурного коэффициента реакции равно	a para para para para para para para pa					
1) 2 2) 3 4) 9						
3. Для смещения равновесия в системе $H_2(\Gamma) + S(TB) \leftrightarrow H_2S(\Gamma)$, $\Delta H_{\Gamma}^0 =$ образования сероводорода необходимо	-21 кДж в сторону					
1) понизить температуру 3) понизить давление						
 ввести катализатор Если константа равновесия некоторой реакции уменьшается с рост 	ом температуры, для					
этой реакции	. 31 /11					
1) $\Delta H_r < 0$ 3) $\Delta H_r \ge 0$ 2) $\Delta H_r > 0$ 4) $\Delta H_r = 0$						
2) $\Delta H_r > 0$ 4) $\Delta H_r = 0$						
Тема «Термохимия»						
1. Уравнения, в которых наряду с исходными веществами и продуктаю тепловой эффект, называются	ми реакции указан также					
1) тепловыми 3) калориметрическими						
2) термохимическими 4) окислительно-восстановительны						
 По термохимическому уравнению 2Cu + O₂ = 2CuO + 310 кДж вычи теплоты, выделяющейся в результате окисления 16 г меди. 	ислите количество					
1) 38,75 кДж 3) 1240 кДж						
2) 77,5 кДж 4) 2480 кДж						

· · · · · · · · · · · · · · · · · · ·	азования H ₂ S (г), если известен тепловой эффект
реакции его горения:	202
$2H_2S_{(r)} + 3O_{2(r)} = 2SO_{2(r)} + 2H_2O_{(r)}; \Delta H^0 = -10$	
1) -499 кДж	3) -40 кДж
2) -20 кДж	4) -1058 кДж аться для расчета изменения энтальпии процесса
$Al_2O_3 + 3SO_3 = Al_2(SO_4)_3$; $\Delta H_{x.p.} - ?$	пъся для расчета изменения энтальний процесса
1) $\Delta H x.p. = \Delta H^{obp.} Al_2(SO_4)_3 + \Delta H^{obp.} Al_2O_3 - 3\Delta H^{obp.}$	^{обр.} SO °
2) $\Delta H \times p = \Delta H^{ofp.} Al_2 O_3 - 3 \Delta H^{ofp.} SO_3 - \Delta H^{ofp.} Al_2$	(SO ₃)
3) $\Delta H \times p = \Delta H^{\text{obp.}} Al_2(SO_4)_3 - \Delta H^{\text{obp.}} Al_2O_3 - 3\Delta H$	00p. SO:
4) $\Delta H \times p. = \Delta H^{\text{obp.}} A I_2 (SO_4)_3 - \Delta H^{\text{obp.}} A I_2 O_3 - \Delta H^{\text{ob}}$	p. SO ₂
2004/3	
Тема «Электролити	ческая диссоциация»
1. Многоосновные кислоты и основания в с	отличие от одноосновных диссоциируют
1. практически мгновенно	3. ступенчато
2. очень медленно	4. практически не диссоциируют
2. Для уравнения реакции CuSO₄ + KOH	= сокращенное ионное уравнение имеет вид
1. $2K^{+} + SO_{4}^{2} = K_{2}SO_{4}$ 2. $Cu^{2+} + SO_{4}^{2} + 2K^{+} + 2OH = Cu(OH)_{2} +$	3. $CuSO_4 + 2OH = Cu(OH)_2 + SO_4^2$
2. $Cu^{2+} + SO_4^{2-} + 2K^{+} + 2OH^{-} = Cu(OH)_2 +$	4. $Cu^{2+} + 2OH = Cu(OH)_2$
K_2SO_4	
3. Бромид бария вступит в реакцию обмен	
1. сульфатом меди (II)	3. гидроксидом лития
2. хлоридом меди (II)	4. азотной кислотой
4. Для соединений NH₄OH и NH₄NO₃ верно	
1. только первое — сильный электролит	
2. оба — слабые электролиты 5. Укажите правили нее выражение К	4. оба — сильные электролиты
5. Укажите правильное выражение К _{ДИС} гид	
$\frac{1}{K} = \frac{2[OH^{-}][Fe^{3+}]}{1}$	$\frac{3 K}{100000000000000000000000000000000000$
1. $K_{JUC2} = \frac{2[OH^-][Fe^{3+}]}{[Fe(OH)^+_2]};$	3. $K_{JUC2} = \frac{[Fe^{3+}][OH^{-}]^{2}}{[Fe(OH)_{2}^{+}]};$
<u> -</u>	
2. $K_{\text{max}} = \frac{[OH]^{2}[Fe^{2\pi}]}{[Fe^{2\pi}]}$	4. $K_{JUC2} = \frac{[Fe(OH)^{2+}][OH^{-}]}{[Fe(OH)^{+}]};$
2. $K_{\text{ZMC}2} = \frac{[OH^-]^2 [Fe^{3+}]}{[Fe(OH)_3]}$.	$[Fe(OH)_2^+]$
	изведение воды, рН»
	сли молярная концентрация гидроксид-ионов равна
0,001M.	0.40:7
1. 10 ⁻¹	3. 10 ⁻⁷
2. 10 ⁻³	4. 10 ⁻¹⁴
· · · · · · · · · · · · · · · · · · ·	выражать через водородный показатель (рН),
вычисляемый по формуле:	2 1 ((1) 1
1. pH=- lg [H ⁺]	3. pH= lg [H ⁺]
2. pH=- lg [OH]	4. pH= - ln [H ⁻] цением ацетата натрия и уксусной кислоты 1: 1
имеет pH (К _{дис.} уксусной кислоты равна 1,8* 10 ⁻¹	шением ацетата натрия и уксусной кислоты т. т 5)
1. 4,74	3. 1,8
2. 5,8	4. 5
	л. о рда в растворе HCl с концентрацией 0,01 моль/л, при
условии, что НСІ продиссоциировал полностью.	да в раствороттого концонтрацион с,ст мольи, при
1. 10 ² моль/л	3. 10 ⁻¹² моль/л
2. 10 ⁻² моль/л	4. 10 ⁻¹⁴ моль/л
5.Укажите pH 0,003M раствора соляной ки	
1. 11,5	3. 7
2. 3	4. 2,5
Тема «Коллои	дные растворы»
1 1170 11001 1200705 10075011111 114 2007200011	12

- 1. Что называется коллоидным раствором?
- 1) Дисперсные системы, размер частиц дисперсной фазы которых от 1 до 100 ммк 2) Дисперсные системы, в которых дисперсная фаза и дисперсионная среда находятся в жидких агрегатных состояниях
- 3) Дисперсные системы, в которых дисперсная фаза твёрдое вещество, дисперсионная среда жидкость

r) CH₃-CH(CH₃)-CH(CH₃)- CH₂OH

3. Напишите структурные формулы органических соединений и назовите их по номенклатуре IUPAC: а) изогексан б) триметилуксусный альдегид в) изопропилбромид г) метилэтилпропилметан 4. Найдите ошибку в названиях следующих соединений, напишите структурные формулы этих соединений и правильно назовите каждое: а) 2-этилбутан б) 4-этилпентан в) 4-метилпентан е) 3,3-диметилбутан 5. Укажите число изомеров соединения С₃H₅CI: б) 4; в) 3; г) 2. a) 5; Тема «Ациклические углеводороды» 1. И бутан, и бутилен реагируют с 1) бромной водой 3) водородом раствором КМпО₄ 4) хлором 2. Верны ли следующие суждения о свойствах углеводородов? А. Алканы вступают в реакции полимеризации. Б. Этилен обесцвечивает раствор перманганата калия. 1) верно только А 3) верны оба суждения 2) верно только Б 4) оба суждения неверны 3. Превращение бутана в бутен относится к реакции 1) полимеризации 3) дегидратации 2) дегидрирования 4) изомеризации 4. Общая формула алкенов... 1) C_nH_{2n-6} 3) C_nH_{2n} 2) C_nH_{2n-2} 4) C_nH_{2n+2} 5. Гексан и 2,2-диметилбутан являются 1) структурными изомерами 3) гомологами 2) геометрическими изомерами 4) одним и тем же веществом Тема «Ароматические углеводороды» 1. Какое вещество из перечисленных ниже может реагировать с водным раствором перманганата калия? 1) бензол; 2) масляная (бутановая) кислота; 3) стирол (винилбензол); 4) полиэтилен. 2. Какое органическое соединений образуется при бромировании этилбензола при нагревании или на свету без катализатора? 1) орто-бромэтилбензол; 2) пара-бромэтилбензол: 3) 1-бром-2-этилбензол; 4) 1-бром-1-фенилэтан. 3. Какие органические соединения преимущественно образуются при бромировании изопропилбензола в присутствии катализатора AICl₃? 1) м-бромизопропилбензол; 2) о-бромизопропилбензол; 3) п-бромизопрпилбензол; 4) 2-бром-2-фенилпропан. 4. Взаимодействуя с веществом X, бензол превращается в свой гомолог. Укажите вещество X. 1) H₂; 2) CH₃CI; 3) C₂H₆; 4) HNO₃. Тема 4 «Спирты. Фенолы»

3) водородом

1. Этанол взаимодействует с

1) метанолом

2)	MOTOLION	4)	MORLIO
۷)	метаном 2. В схеме превращений $C_2H_6 \to X \to C_2H_6$,	МЕДЬЮ Н вешеством «Х» авпаетса
1)	C_2H_5Br		C_2H_2
	CH₃OH		$C_2H_5 - O - C_2H_5$
-,	3. Кислотные свойства наиболее выраже	,	
1)	фенола		этанола
	метанола		глицерина
,	4. Сложный эфир можно получить при вза		•
1)	пропеном		диэтиловым эфиром
2)	метанолом		муравьиной кислотой
	 Вещество CH₂(OH)-CH(OH)-CH₂(OH) от 		
	спиртов		альдегидов
2)	многоатомных спиртов		карбоновых кислот
41	6. В результате реакции пропена с водой		
,	пропаналь		пропанол-2
۷)	пропанол-1		ацетон
1)	7. К фенолам относится вещество, форму $C_6H_5 - O - CH_3$		$C_6H_5 - OH$
,	C ₆ H ₁₃ – OH		$C_6H_5 - CH_3$
_,	8. Вещество X может реагировать с этанс		
Bei	цество?	3101	wi, no ne pearupyer o quenosiowi. Nakoe oro
	Na	3)	HCI
,	NaOH	,	бромная вода
,	9. Какое из перечисленных ароматически		
зам	лещения?		
1)	C_6H_6	3)	C_6H_5CI
2)	C_6H_5OH		$C_6H_5NO_3$
	10. Отличие в химических свойствах спир	тов	и фенолов проявляется в их взаимодействии с
		٥,	
1)	NaOH	3)	CO_2
2)	N.a.		
2)	Na		Na ₂ CO ₃
2)		4)	Na_2CO_3
2)	Тема 5 «Альдегиды, кето	4) ны	Na₂CO₃ , карбоновые кислоты»
ŕ	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги	4) ны	Na₂CO₃ , карбоновые кислоты»
1)	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол	4) ны	Na₂CO₃ , карбоновые кислоты»
1)	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол	4) ны	Na₂CO₃ , карбоновые кислоты»
1) 2) (3) (Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь	4) ны	Na₂CO₃ , карбоновые кислоты»
1) 2) (3) (Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота	4) ны ров	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия:
1) 2) (3) (4) (Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь	4) ны ров	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия:
1) 2) (3) (4) (Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру	4) ны ров	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия:
1) 2) (3) (3) (4) (1) (1) (1) (2)	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагирун Н ₂ NCH ₂ COOH	4) ны ров	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия:
1) 2) (3) (3) (4) (1) (1) (2) 3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH CH ₃ COOH CCI ₃ COOH	4) эны ров ет с	Na ₂ CO ₃ в карбоновые кислоты» в ть с гидрокарбонатом калия: с соляной кислотой?
1) 2) (3) (4) (1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH CH ₃ COOH CCI ₃ COOH HCOOH 3. Метиловый эфир уксусной кислоты и мети	4) эны ров ет с	Na ₂ CO ₃ в карбоновые кислоты» в ть с гидрокарбонатом калия: с соляной кислотой?
1) 2) 0 3) 3 4) 1 1) 1 2) 3) 0 4) 1	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH CH ₃ COOH CCI ₃ COOH HCOOH 3. Метиловый эфир уксусной кислоты и мети	4) эны ров ет с	Na ₂ CO ₃ в карбоновые кислоты» в ть с гидрокарбонатом калия: с соляной кислотой?
1) 2) 0 3) 3 4) 1 1) 1 2) 3) 0 4) 1 1) 0 2)	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н₂NCH₂COOH CH₃COOH CCI₃COOH HCOOH 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами	4) эны ров ет с	Na ₂ CO ₃ в карбоновые кислоты» в ть с гидрокарбонатом калия: с соляной кислотой?
1) 2) 0 3) 3 4) 1 1) 1 2) 3) 0 4) 1 1) 0 2) 3) 0	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH CH ₃ COOH CCI ₃ COOH HCOOH 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами	4) эны ров ет с	Na ₂ CO ₃ в карбоновые кислоты» в ть с гидрокарбонатом калия: с соляной кислотой?
1) 2) 0 3) 3 4) 1 1) 1 2) 3) 0 4) 1 1) 0 2) 3) 0	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагирун Н₂NCH₂COOH CH₃COOH CCI₃COOH 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами геометрическими изомерами	4) рны ров ет с	Na ₂ CO ₃ в карбоновые кислоты» в ать с гидрокарбонатом калия: с соляной кислотой? детат являются
1) 2) 0 3) 3 4) 1 1) 1 2) 3) 0 4) 1 2) 3) 0 4) 4	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагирун Н ₂ NCH ₂ COOH СН ₃ COOH ССІ ₃ COOH 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами геометрическими изомерами 4. Органическое вещество, жидкость с харак	4) рны ров эт с лац	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? детат являются
1) (2) (3) (4) (1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH СН ₃ COOH ССІ ₃ COOH НСООН 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами геометрическими изомерами 4. Органическое вещество, жидкость с харак йствии на него карбоната натрия выделяется угле	4) ров ет с лац	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? детат являются
1) 2) (3); 4) (1) (2) 3) (4) (1) (2) (2) (3) (4) (4) (4)	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH СН ₃ COOH ССІ ₃ COOH 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами геометрическими изомерами 4. Органическое вещество, жидкость с харак йствии на него карбоната натрия выделяется угле створом оксида серебра(I) образуется серебро —	4) ров ет с лац	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? детат являются
1) 2) (3); 4) (1) (2) 3) (4) (4) 1) (2) 2) дей расс 1) г	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH СН ₃ COOH НСООН 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами 4. Органическое вещество, жидкость с харак йствии на него карбоната натрия выделяется угле отвором оксида серебра(I) образуется серебро— метановая кислота	4) ров ет с лац	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? детат являются
1) 2) (3) (4) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH СН ₃ COOH ССІ ₃ COOH НСООН 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами геометрическими изомерами 4. Органическое вещество, жидкость с харак йствии на него карбоната натрия выделяется угле створом оксида серебра(I) образуется серебро — метановая кислота уксусная кислота	4) ров ет с лац	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? детат являются
1) 2) (3) (4) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH СН ₃ COOH 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами 4. Органическое вещество, жидкость с харак иствии на него карбоната натрия выделяется угле створом оксида серебра(I) образуется серебро — метановая кислота видетальдегид	4) ров ет с лац	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? детат являются
1) 2) (3) (4) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH СН ₃ COOH ССІ ₃ COOH 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами 4. Органическое вещество, жидкость с харак иствии на него карбоната натрия выделяется угле створом оксида серебра(I) образуется серебро метановая кислота уксусная кислота ацетальдегид пропиловый спирт	4) ров ет с лац герн кисл этс	Na ₂ CO ₃ в карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? в тат являются ным запахом, изменяет окраску лакмуса, при пый газ, а при взаимодействии с аммиачным о
1) 2) (3) (4) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагиру Н ₂ NCH ₂ COOH СН ₃ COOH ССІ ₃ COOH 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами 4. Органическое вещество, жидкость с харак иствии на него карбоната натрия выделяется угле створом оксида серебра(I) образуется серебро метановая кислота уксусная кислота ацетальдегид пропиловый спирт	4) ров ет с лац герн кисл этс	Na ₂ CO ₃ , карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? детат являются
1) (2) (3) (4) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагирун Н2NCH2COOH СН3COOH ССI3COOH НСООН 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами геометрическими изомерами 4. Органическое вещество, жидкость с харак йствии на него карбоната натрия выделяется угле створом оксида серебра(I) образуется серебро — метановая кислота кусусная кислота вистальдегид пропиловый спирт 5. Вещество X при определенных условия грия. Какое это вещество? Н2	4) ров ет с лац герн кисл этс	Na ₂ CO ₃ в карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? в тат являются ным запахом, изменяет окраску лакмуса, при пый газ, а при взаимодействии с аммиачным о
1) (2) (3) (4) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагирун Н2NCH2COOH СН3COOH ССI3COOH 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами геометрическими изомерами 4. Органическое вещество, жидкость с харак йствии на него карбоната натрия выделяется угле створом оксида серебра(I) образуется серебро — метановая кислота ацетальдегид пропиловый спирт 5. Вещество X при определенных условия грия. Какое это вещество? Н2 СН3СООН	4) ров ет с лац герн кисл этс	Na ₂ CO ₃ в карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? в тат являются ным запахом, изменяет окраску лакмуса, при пый газ, а при взаимодействии с аммиачным о
1) (2) (3) (4) (1) (2) (3) (4) (4) (4) (7) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Тема 5 «Альдегиды, кето 1. Укажите вещество, которое может реаги этанол фенол этаналь пропановая кислота 2. Какая из перечисленных кислот реагирун Н2NCH2COOH СН3COOH ССI3COOH НСООН 3. Метиловый эфир уксусной кислоты и мети одним и тем же веществом гомологами структурными изомерами геометрическими изомерами 4. Органическое вещество, жидкость с харак йствии на него карбоната натрия выделяется угле створом оксида серебра(I) образуется серебро — метановая кислота кусусная кислота вистальдегид пропиловый спирт 5. Вещество X при определенных условия грия. Какое это вещество? Н2	4) ров ет с лац герн кисл этс	Na ₂ CO ₃ в карбоновые кислоты» вать с гидрокарбонатом калия: с соляной кислотой? в тат являются ным запахом, изменяет окраску лакмуса, при пый газ, а при взаимодействии с аммиачным о

Тема « Простые и сложные эфиры. Жиры» 1. Какие из предложенных соединений эфиры: a) CH₃O C(CH₃)₂CH₂CH₃ б) CH₃CH₂CH(OH)CH₂CH₃ B) CH₃COOCH₃ r) CH₃CH(CH₃)₂CH₂CH₂COOH д) CH₃COCH₂CH2CH₃ 2. Что образуется при щелочном гидролизе сложного эфира состава С₃H₇COOC₂H₅? а) масляная кислота и этиловый спирт б) соль бутановой кислоты и этанол в) бутанол и этанол д) бутанол и этановая кислота Какие соединения образуются при действии на этилпропионат СН₃СН₂СН₂ОН (H⁺): а) алкоголят этанола и пропанола и пропановая кислота б) пропановая кислота и пропилэтиловый эфир в) соль пропановой кислоты и простой эфир г) пропилпропионат и этанол 4. При кислотном гидролизе олеодипальмитина образуются: а) смесь глицерина и солей пальмитиновой и олеиновой кислот б) смесь глицерина и пальмитиновой кислоты и соли олеиновой кислоты в) смесь глицерина и олеиновой кислоты и соли пальмитиновой кислоты г) смесь глицерина и пальмитиновой и олеиновой кислот 5. При щелочном гидролизе жира триолеина образуются: а) только глицерин б) только олеиновая кислота

Тема «Природные высокомолекулярные органические соединения»

1. Какой углевод является дисахаридом?

г) этиленгликоль, олеиновая кислота

- а) рибоза;
- б) лактоза;

в) мыла, глицерин

- в) крахмал;
- г) глюкоза.
- 2. Какое соединение образуется при окислении мальтозы гидроксидом меди (II)?
- а) мальтобионовая кислота;
- б) мальтобиозат меди (II);
- в) манноза;
- г) сахарная кислота.
- 3. Что является конечным продуктом гидролиза крахмала:
- а) декстрины;
- б) глюкоза;
- в) фруктоза;
- г) сахароза.
- 4. В порядке уменьшения молекулярной массы названы вещества в ряду...
- а) глюкоза, лактоза, галактоза;
- б) сахароза, целлюлоза, фруктоза;
- в) целлюлоза, дезоксирибоза, мальтоза;
- г) крахмал, целлобиоза, рибоза.
- 5. Ксантопротеиновая реакция доказывает наличие в белках...
- а) групп –SH;
- б) пептидной связи;
- в) остатков ароматических кислот;
- г) карбоксильных групп.

Тема «Синтетические высокомолекулярные органические соединения»

- 1. Реакции полимеризации характерны для
- 1) стирола, пропена, этилена

3) стирола, этина, метановой кислоты

2) пропилена, метаналя, этана

- 4) пропена, бутадиена, гексана
- 2. Тефлон образуется при полимеризации мономера, формула которого
- 1) CHF = CHF

3) $CF_2 = CF_2$

2) $CHF = CF_2$

4) $CF_2 = C = CF_2$

- 3. Полимер, не обладающий термопластическими свойствами, то есть способностью размягчаться при нагревании и затвердевать при охлаждении без химических превращений, называется
- 1) термонасыщенным

3) термореактивным

2) термокристаллическим

- 4) термоненасыщенным
- 4. Особенностью реакции полимеризации, отличающей её от поликонденсации, является
- 1) образование побочных низкомолекулярных
- продуктов
- 3) отсутствие побочных низкомолекулярных продуктов
- 2) региоселективность процесса
- 4) отсутствие разветвлённых структур
- 5. Сырьём для получения искусственных волокон является
- 1) резина

3) каучук

2) целлюлоза

4) крахмал

3.1.4. Средства для промежуточной аттестации по итогам изучения дисциплины

ВОПРОСЫ для подготовки к итоговому контролю

9.3 Перечень примерных вопросов к экзамену

Блок 1

- 1. Квантово-механическая модель строения атома. Состав атома. Характеристика энергетического состояния электрона системой квантовых чисел.
- 2. Квантовые числа. Главное квантовое число, энергетические уровни. Орбитальное квантовое число, энергетические подуровни. Магнитное квантовое число, количество атомных орбиталей в энергетическом подуровне. Спин электрона.
- 3. Закономерности распределения электронов в атомах (Принцип Паули. Электронная емкость атомной орбитали энергетических подуровней и энергетических уровней).
- 4. Правила и порядок заполнения атомных орбиталей. Принцип наименьшей энергии, правило Клечковского. Электронная формула атома. Правило Хунда.
- 5. Основное и возбуждённое состояния атома (на примере атома углерода). Электронная конфигурация валентных электронов *s*-, *p*-, *d* и *f*-элементов.
- 6. Периодическая система химических элементов Д.И. Менделеева. Периодический закон Д.И. Менделеева. Причина периодического повторения свойств элементов. Связь между электронной структурой атомов и периодической системой Д.И. Менделеева: порядковый номер элемента, периоды, группы и подгруппы элементов.
- 7. Периодический закон Д.И.Менделеева. Значение периодического закона. Напишите формулы оксидов и гидроксидов всех элементов 3 периода в их наивысших степенях окисления. Как изменяются кислотные свойства в периоде слева направо?
- 8. Структура периодической системы: группы, подгруппы, периоды, ряды. Какой из элементов четвертого периода ванадий или мышьяк обладает более выраженными металлическими свойствами? Написать формулы кислородных соединений этих элементов, указать их характер.
- 9. Окислительно-восстановительные свойства элементов. Энергия (потенциальная) ионизации. Энергия сродства к электрону. Электроотрицательность. Закономерность изменения окислительно-восстановительных свойств элементов в периодах и группах. Металлические и неметаллические элементы в периодической системе Д.И. Менделеева.
- 10. Периодический закон. Энергия ионизации, сродства к электрону, электроотрицательность, изменение их в периодах и группах. Как изменяются эти характеристики в 5A группе сверху вниз и 5 периоде слева направо.
- 11. Типы химической связи. Ковалентная связь. Обменный механизм образования ковалентной связи. Образование ковалентных связей возбужденным атомом. Насыщаемость ковалентной связи.
- 12. Типы химической связи. Ковалентная связь. Донорно-акцепторный механизм образования ковалентной связи. Электронная структура частиц-доноров и частиц-акцепторов. Образование комплексов и агрегатов молекул.
- 13. Направленность ковалентной связи. Сигма- и пи- связи. Кратные связи. Примеры молекул с кратными связями.
- . 14. Гибридизация атомных орбиталей. Гибридизация s- и p- атомных орбиталей. Пространственное расположение гибридных атомных орбиталей при sp- гибридизации. Структура простейших молекул.
- 15. Полярность связей и молекул. Полярная и неполярная связь. Электрический момент диполя связи. Влияние электроотрицательности элементов на полярность связи. Полярные и неполярные молекулы.

- 16. Ионная связь как предельно поляризованная ковалентная связь. Свойства ионной связи.
- 17. Ионная связь. Свойства ионной связи и соединений с этим типом связи. Выпишите из предложенного ряда веществ ионные соединения: C₂H₄, CaS, O₂, Mg, Na₂S, BaCl₂.
 - 18. Металлическая связь как особый вид химической связи.
 - 19. Водородная связь (межмолекулярная и внутримолекулярная).
- 20. Основные понятия термодинамики. Внутренняя энергия. Работа и теплота две формы передачи энергии.
- 21. Классификация термодинамических систем и процессов. Изобарный и изохорный процессы. Экзотермические и эндотермические реакции.
- 22. Первый закон термодинамики. Энтальпия. Стандартная теплота образования и стандартная теплота сгорания веществ. Закон Гесса и его следствия.
 - 23. Второй закон термодинамики. Энтропия. Энергия Гиббса.
- 24. Какую тенденцию выражает: а) энтальпийный фактор б) энтропийный фактор? Какая функция состояния системы даёт количественную характеристику одновременного влияния того и другого факторов? Каким уравнением это выражается?
- 25. Прогнозирование направления самопроизвольно протекающих процессов. Роль энтальпийного и энтропийного факторов.
- 26. Энергетические эффекты химических реакций. Теплота реакции в изобарном и изохорном процессе. Термохимическое уравнение реакции. Закон Гесса. Энтальпия образования химического соединения. Следствия из закона Гесса.
- 27.Энтропия. Энтропия как функция термодинамической вероятности состояния системы. Изменение энтропии при фазовых переходах. Определение (расчет) изменения энтропии в химическом процессе.
- 28. Энергия Гиббса. Термодинамический критерий самопроизвольного протекания процесса и условие равновесия.
- 29.Скорость химической реакции. Зависимость скорости реакции от концентрации веществ. Закон действующих масс. Кинетическое уравнение гомогенной и гетерогенной реакции.
- 30. Скорость химической реакции и её зависимость от концентрации реагирующих веществ. Закон действующих масс для гомо- и гетерогенных реакций . Напишите уравнение для скорости прямой реакции $CO_{2(\Gamma)} + C_{(T)} \leftrightarrow 2CO_{(\Gamma)}$.
- 31. Зависимость скорости реакции и времени протекания её от температуры. Правило Вант-Гоффа. Температурный коэффициент.
 - 32. Энергия активации. Уравнение Аррениуса. Энергетический профиль реакции.
- 33. Катализ. Гомогенный и гетерогенный катализ. Энергетический профиль каталитической реакции.
- 34. Химическое равновесие. Обратимые и необратимые по направлению реакции. Термодинамическое и кинетическое условие химического равновесия. Константа химического равновесия. Расчет константы равновесия.
- 35. Химическое равновесие. Условия химического равновесия. Принцип Ле-Шателье. В каком направлении сместится равновесие в системе $C_{(TB)} + CO_{2(\Gamma)} \leftrightarrow 2CO_{(\Gamma)} + Q$ при увеличении температуры, при повышении давления? Напишите уравнение для скорости обратной реакции.
- 36. Химическое равновесие. Прогнозирование направления смещения химического равновесия. Принцип Ле-Шателье. В каком направлении сместится равновесие в системе $CO_{2(\Gamma)} + C_{(T)} \leftrightarrow 2CO_{(\Gamma)}$ Q при уменьшении температуры, давления? Напишите уравнение для скорости прямой реакции.
- 37. Химическое равновесие, Прогнозирование направления смещения химического равновесия. Принцип Ле-Шателье. Записать константу химического равновесия реакций: $Fe_2O_{3(K)}+3CO_{(\Gamma)} \rightarrow 2Fe_{(K)}+3CO_{2(\Gamma)}; \ N_{2(\Gamma)} + 3H_{2(\Gamma)} \rightarrow 2NH_{3(\Gamma)}$.
- 38.Общая характеристика растворов и дисперсных систем. Классификация дисперсных систем. Характеристика растворов. Типы растворов. Способы выражения концентрации растворов (массовая доля, молярность, моляльность, эквивалентная концентрация или нормальность).
- 39. Водные растворы электролитов. Понятие электролита. Электролитическая диссоциация. Сильные и слабые электролиты. Степень и константа электролитической диссоциации. Закон разбавления Оствальда.
- 40. Сильные и слабые электролиты. Критерии классификации. Напишите уравнения реакций взаимодействия гидроксида кальция и серной кислоты приводящие к образованию: а) средней соли; б) кислой соли; в) основной соли. Назовите, полученные соли
- 41. Электролитическая диссоциация воды. Ионное произведение воды. Соотношение концентраций ионов H+ и OH- в нейтральной, кислой и щелочной средах. Водородный показатель. Шкала pH водных растворов. Цветные индикаторы pH.
- 42. Ионное произведение воды. Водородный и гидроксильный показатель. Вычислить концентрацию катионов водорода и рН 0,01М раствора хлороводородной кислоты.

- 43. Кислоты и основания. Электролитическая диссоциация кислот и оснований. Сильные и слабые кислоты и основания. pH водных растворов кислот и оснований.
- 44. Растворы солей. Средние (нормальные), кислые и основные соли. Электролитическая диссоциация солей (на примере диссоциации фосфата натрия, гидросульфата калия и хлорида дигидроксоалюминия).
- 45. Основные положения теории электролитической диссоциации. Написать уравнения диссоциации следующих соединений: гидроксид кальция, серная кислота, дигидрофосфат магния, сульфат гидроксомеди.
- 46.Основные положения теории электролитической диссоциации. Подтвердите амфотерный характер гидроксида алюминия. Составьте молекулярно-ионные уравнения.
- 47. Ионные реакции в растворах. Характеристика ионных реакций. Условие протекания реакции ионного обмена. Молекулярное и ионно-молекулярное уравнение реакции ионного обмена (на примере реакции взаимодействия сульфата меди (II) и гидроксида натрия).
- 48. Общие (коллигативные) свойства растворов. Законы Рауля. Осмос, количественная характеристика осмоса.
- 49. Следствия из закона Рауля. Понижение температуры замерзания (кристаллизации) и повышение температуры кипения разбавленных растворов неэлектролитов по сравнению с чистым растворителем.

Блок 2

- 1. Окислительно-восстановительные свойства элементов и их соединений в зависимости от положения в периодической системе химических элементов Д.И. Менделеева. Степень окисления. Расчёт степеней окисления. Важнейшие окислители и восстановители.
- 2. Окислительно-восстановительные реакции (OBP). Направление окислительно-восстановительных реакций. Эквиваленты окислителя и восстановителя. Подбор коэффициентов в уравнениях OBP (методом электронного баланса на примере реакции $FeSO_4 + KMnO_4 + H_2SO_4 = Fe_2(SO_4)_3 + K_2SO_4 + MnSO_4 + H_2O)$.
- 3. Характеристика окислительно-восстановительного процесса. Окисление и восстановление, окислитель и восстановитель. Изменение степени окисления элементов при окислении и восстановлении. Уравнение окислительно-восстановительного процесса. Обратимость окислительно-восстановительного процесса.
- 4. Почему химически активные металлы при погружении в воду заряжаются отрицательно? Объяснить, привести схему. Дать определение возникающего потенциала.
- 5. Почему химически неактивные металлы при погружении в раствор собственной соли заряжаются положительно? Объяснить, привести схему. Дать определение возникающего потенциала.
- 6. В каком случае заряд цинковой пластинки будет больше при погружении в воду или в раствор соли цинка? Объяснить, привести схему.
- 7. В каком случае заряд медной пластинки будет больше при погружении в воду или в раствор соли меди? Объяснить, привести схему.
- 8. Дать определение электродного потенциала. Записать уравнение электродного потенциала Нернста для химически активных металлов. Пояснить все значения.
- 9. Что такое стандартный электродный потенциал? Почему его называют еще нормальным электродным потенциалом? Как он может быть измерен?
- 10. Электродные потенциалы. Электрод. Абсолютный и относительный электродный потенциал. Водородная шкала относительных электродных потенциалов. Факторы, влияющие на величину относительного электродного потенциала (уравнение Нернста).
- 11. Стандартный электродный потенциал. Стандартный водородный электрод. Ряд стандартных электродных потенциалов. Количественная характеристика активности окислителей и восстановителей величинами стандартных электродных потенциалов.
- 12. Что представляет собой стандартный водородный электрод? Каковы его устройство, механизм возникновения и величина заряда, для чего он используется?
- 13. Какой металл обладает большей химической активностью алюминий или цинк, если стандартный электродный потенциал первого из них 1,36 B, а второго 0,76 B? Обосновать ответ.
- 14. Ряд стандартных потенциалов. Водородный электрод. Составьте схему гальванического элемента в котором свинец является: а) катодом; б) анодом. Рассчитайте э.д.с. этих гальванических элементов, если E^0 Pb $^{2+}$ /Pb 0 = -0,13B
- 15. Какой из металлов медь или ртуть будет вытеснять другой металл из его соединений, если стандартный электродный потенциал меди +0.34 В, а ртути +0.79 В? Обосновать ответ.
- 16. Объяснить, как работает гальванический элемент Даниэля-Якоби. Почему при его работе происходит постоянный перенос электронов во внешней цепи?
- 17. Гальванический элемент. Анод и катод, анодный и катодный процессы. Уравнение электрохимического процесса в гальванического элемента. ЭДС и ее определение. Запись гальванического элемента.

- 18. Какие реакции (окисления или восстановления) протекают на каждом электроде гальванического элемента? Почему одна и та же окислительно-восстановительная реакция в гальваническом элементе дает электрический ток, а в растворе без элементов нет?
- 19. Гальванические элементы. Ряд стандартных эдектродных потенциалов. Написать уравнения процессов, протекающих на катоде и аноде, при скручивании медного и алюминиевого проводов. Рассчитать ЭДС. (E^0 Al $^{3+}$ /Al 0 = -1,66B, E^0 Cu $^{2+}$ /Cu 0 = +0,34B)/
- 20. К какому типу относится гальванический элемент из двух серебряных электродов, погруженных соответственно в 0,01 М и 0,1 М растворы нитрата серебра? За счет какого процесса в нем вырабатывается электрический ток? Какой из электродов заряжен положительно, а какой отрицательно? От чего зависит его ЭДС?
- 21. Химические процессы, протекающие на электродах при разрядке и зарядке свинцового аккумулятора.
- 22. Электролиз. Сущность процесса электролиза. Потенциал разложения. Явление перенапряжения. Понятие об инертных (нерастворимых) и активных (растворимых) анодах.
- 23. Электролиз расплавов и водных растворов солей с инертными (нерастворимыми) анодами. Последовательность окисления и восстановления ионов. Анодные и катодные процессы.
- 24. Электролиз расплавов. Характеристика электролиза. Уравнение электродных процессов и уравнение электролиза (на примере электролиза расплава хлорида меди). Законы Фарадея. Практическое применение электролиза расплавов.
- 25. Электролиз водных растворов. Характеристика электролиза. Определение характера электродных процессов. Уравнение электродных процессов и уравнения электролиза (на примерах электролиза растворов сульфата меди и хлорида натрия с инертными электродами). Практическое применение электролиза водных растворов.
- 26. Электролиз водных растворов, последовательность разрядки ионов у катода и анода. Написать уравнения процессов протекающих на инертных электродах при электролизе раствора сульфата натрия.
- 27. Электролиз водных растворов с растворимым анодом. Характеристика электролиза с нерастворимым и растворимым анодами. Уравнения электродных процессов и уравнение электролиза с растворимым анодом (на примере электролиза раствора хлорида натрия с цинковыми электродами). Практическое применение электролиза с растворимым анодом.
- 28. Электролиз. Гальваностегия. Рафинирование. Составить схемы электролиза расплава и раствора хлорида калия.
- 29. Электролиз растворов, применение его для получения и рафинирования металлов (на примере электролиза сульфата меди с медным анодом).
- 30. Коррозия металлов. Химическая и электрохимическая коррозия. Виды электрохимической коррозии. Факторы, влияющие на интенсивность коррозии.
- 31. Виды коррозии. Какие электродные процессы протекают при коррозии технического железа в воздушно-влажной и кислой средах?
- 32. Коррозия металлов. Методы защиты металлов от коррозии. Написать процессы, происходящие при коррозии в воздушно-влажной среде скрученных вместе медного и алюминиевого провода.
- 33. Основные виды коррозии. Электрохимическая коррозия металлов. Написать процессы, происходящие при коррозии сплава свинца и меди в кислой и воздушно-влажной средах.
- 34. Коррозия металлов. Протекторная защита. Написать уравнения процессов, протекающих при протекторной защите магнием стального трубопровода в воздушно-влажной среде.
- 35. Коррозия металлов. Протекторная защита. Напишите процессы, протекающие при коррозии луженого железа в кислой и воздушно-нейтральной среде.
- 36. Катодные и анодные покрытия. Коррозия хромированного железа при нарушении целостности покрытия.
- 37. Защита металлов от коррозии. Различные виды покрытий. Коррозия никелированного железа в воздушно-влажной среде.
- 38. Методы определения химического состава веществ. Качественный и количественный анализ.
- 39. Методы определения химического состава веществ. Количественный анализ. Методы количественного анализа (химические, физико-химические, физические).
 - 40. Лабораторное оборудование, используемое при качественном анализе веществ.
- 41. Основы титриметрического анализа. Классификация методов по характеру химической реакции, по способу титрования. Расчёты в объёмном анализе.
- 42. Требования к реакциям, применяемым в объёмном анализе. Рабочие растворы. Способы приготовления рабочих растворов (растворы с приготовленным титром, с установленным титром).
- 43. Метод кислотно-основного титрования (нейтрализации) ацидиметрия и алкалиметрия. Рабочие растворы, стандартные вещества.
 - 44. Углеводороды и их производные. Состав и свойства органического топлива.

- 45. Твёрдое, жидкое и газообразное топливо. Понятие о физико-химических процессах горения топлива.
- 46. Химия полимеров. Способы получения полимеров, реакции полимеризации и поликонденсации. Зависимость свойств полимеров от состава и структуры.
- 47. В чём отличие реакций полимеризации и поликонденсации? Ответ поясните уравнениями реакций.
- 48. Полиэтилен обладает высокими диэлектрическими свойствами, поэтому применяется для изоляции проводов и кабелей. Составьте уравнение реакции получения полиэтилена. Вычислите молекулярную массу полимера, имеющего 126 структурных звеньев.
- 49. Полимером какого непредельного углеводорода является натуральный каучук? Написать структурную формулу этого углеводорода. Как называется процесс превращения каучука в резину? Чем по строению и свойствам отличаются каучук и резина?
- 50. Какие соли обусловливают жёсткость природной воды? Какую жёсткость называют постоянной, временной? Написать уравнения реакций, с помощью которых можно устранить карбонатную и некарбонатную жёсткость.

ПРИМЕР ЭКЗАМЕНАЦИОННОГО БИЛЕТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина» Кафедра математических и естественнонаучных дисциплин

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1 по дисциплине «Химия»

- 1. Окислительно-восстановительные свойства элементов. Закономерность изменения окислительно-восстановительных свойств элементов в периодах и группах. Металлические и неметаллические элементы в периодической системе Д.И. Менделеева.
- 2. Электролиз. Сущность процесса электролиза. Явление перенапряжения. Понятие об инертных (нерастворимых) и активных (растворимых) анодах.
- 3. Составьте уравнения реакций, которые нужно провести для осуществления следующих превращений:
- $Be \to BeCl_2 \to Be(OH)_2 \to Na_2[Be(OH)_4] \to BeSO_4$. Приведите названия исходных соединений и продуктов реакции.

ПЛАНОВАЯ ПРОЦЕДУРА проведения экзамена

Процедура экзамена складывается из следующих этапов:

- 1. Выполнение обучающимся письменной работы по основным разделам дисциплины.
- 2. Проверка преподавателем представленной работы, отметок в журнале учёта посещаемости и успеваемости (выставленные ранее обучающемуся дифференцированные оценки по итогам контрольно-оценочных мероприятий).
- 3.Выставление итоговой оценки в экзаменационную ведомость и зачётную книжку обучающегося.

9.1 Нормативная база проведения							
промежуточной аттестации обучающихся по результатам изучения дисциплины:							
1) действующее «Положение о	текущем контроле успеваемости, промежуточной аттестации						
обучающихся по программам высшего образования (бакалавриат, специалитет, магистратура) и							
среднего профессионального образования в ФГБОУ ВО Омский ГАУ»							
9.2 Основные характеристики							
промежуточной аттестации обучающихся по итогам изучения дисциплины							
Цель	установление уровня достижения каждым обучающимся целей						
промежуточной аттестации -	обучения по данной дисциплине, изложенных в п.1.1 настоящего						
промежуточной аттестации -	документа						
Форма	экзамен						

промежуточной аттестации -		
	1) подготовка к экзамену и сдача экзамена осуществляется за счёт учебного времени (трудоёмкости), отведённого на	
Место экзамена	экзаменационную сессию для обучающихся, сроки которой	
в графике учебного процесса:	устанавливаются приказом по университету	
этрафине у юсного продосса.	2) дата, время и место проведения экзамена определяется	
	графиком сдачи экзаменов, утверждаемым деканом	
	выпускающего факультета	
Форма экзамена -	а - Письменный	
Время проведения экзамена	Дата, время и место проведения экзамена определяется	
	графиком сдачи экзаменов, утверждаемым деканом факультета	
Экзаменационная программа по учебной дисциплине:	1) представлена в фонде оценочных средств по дисциплине 2) охватывает разделы №№ 1-3 (в соответствии с п. 2.2 настоящего документа)	
Методические материалы, определяющие процедуры оценивания знаний, умений, навыков:	представлены в фонде оценочных средств по дисциплине	

ШКАЛА И КРИТЕРИИ ОЦЕНКИ

Оценку «отлично» выставляют обучающемуся за полное и прочное знание программного материала в заданном объеме.

Оценку «хорошо» заслуживает обучающийся за прочное знание программного материала при малозначительных неточностях.

Оценку «удовлетворительно» получает обучающийся за знание программного материала с пробелами, при отсутствии понимания основных понятий, затруднения при решении практических задач.

Оценку «неудовлетворительно» выставляют обучающемуся, который не знает значительной части материала по дисциплине, допускает существенные ошибки в ответах, не может решить практические задачи или решает их с затруднениями.

ЛИСТ РАССМОТРЕНИЙ И ОДОБРЕНИЙ Фонд оценочных средств учебной дисциплины Б1.О.09 Химия в составе ОПОП 20.03.01 Техносферная безопасность

1. Рассмотрен и одобрен в качестве базового варианта:						
а) На заседании обеспечивающей преподавание кафедры математических и естественнонаучных дисциплин;						
протокол № 14 от 25.05.2021 Зав. кафедрой, канд. экон. наук, доцент						
б) На заседании методической комиссии по направлению 20.03.01 Техносферная безопасность; протокол № 10 от 17.06.2021 Председатель МКН – 20.03.01, канд. биол. наук, доцент						
2. Рассмотрен и одобрен внешним экспертом:						
ФГБОУ ВО ОмГМУ Минздрава России Зав. кафедрой химии, доктор биол. наук, профессор И.П. Степанова						

ИЗМЕНЕНИЯ И ДОПОЛНЕНИЯ к фонду оценочных средств учебной дисциплины Б1.О.09 Химия в составе ОПОП 20.03.01 Техносферная безопасность

Ведомость изменений

Срок,		Отметка об утверждении/ согласовании изменений	
с которого вводится изменение	Номер и основное содержание изменения и/или дополнения	инициатор изменения	руководитель ОПОП или председатель МКН